A Class of Separation Axioms in Generalized Topology

Authors

  • D Anabalan Head, Department of Mathematics, Alagappa Govt Arts College Karaikudi Tamilnadu
  • Santhi C Research Scholar, Alagappa Govt Arts College Karaikudi Tamilnadu

DOI:

https://doi.org/10.15415/mjis.2016.42013

Keywords:

µ -compact, gµ –closed set, µTD -space, gµ –regular space, Separation axioms in generalized topology

Abstract

The purpose of this paper is to introduce and study some new class of definitions like µ-point closure and gµ –regular space concerning generalized topological space. We obtain some characterizations and several properties of such definitions. This paper takes some investigations on generalized topological spaces with gµ –closed sets and gµ–closed sets.

Downloads

Download data is not yet available.

References

Csaszar, A., Generalized topology, generalized continuity. (2002). Acta. Mathematica Hungarica, 96 (4), 351-357. http://dx.doi.org/10.1023/A:1019713018007

Csaszar, A., Extremally disconnected generalized topologies. (2004). Annales Univ. Budapest, Sectio Math, 17, 151-165.

Csaszar, A., Generalized open sets in generalized topologies. (2005). Acta Mathematica Hungarica, 106, 1:2, 53-66.

Csaszar, A., d and q modifications of generalized topologies. (2008). Acta Mathematica Hungarica, 120 (3), 275-279. http://dx.doi.org/10.1007/s10474-007-7136-9

Dhana Balan, A.P., μ-Continuous Functions on Generalized topology and certain Allied Structures. (2014). Math. Sci. Int. Research jou, 3 (1), 180-183.

Guldurdek, A and Ozbakir, O.B., On – semi-open sets. (2005). Acta Mathematica Hungarica, 109 (4), 347-355.

Levine, N., A decomposition of continuity in topological spaces, (1961) Amer. Math Monthly 68, 44-66. http://dx.doi.org/10.2307/2311363

Maragathavalli, S., Sheik John, M and Sivaraj, D., On g – closed sets in generalized topological spaces. (2010). J.Adv. Res. Pure. Maths. 2 (1), 57-64,

Noiri, T, and Roy, B., Unification of generalized open sets on topological spaces. (2010). Acta. Math. Hungarica, 130 (4), 349 – 357.

Roy, B, and Jafari, S., On covering properties via generalized open sets. (2002). Annales Universitatis Scientiarum Budapestinensis de Rolando Ectros Nominate Mathematica, 55, 57 – 65.

Roy, B., On a type of generalized open sets. (2011). Applied General Topology, 12 (2), 163-173.

Downloads

Published

2016-03-30

How to Cite

D Anabalan, and Santhi C. 2016. “A Class of Separation Axioms in Generalized Topology”. Mathematical Journal of Interdisciplinary Sciences 4 (2):151-59. https://doi.org/10.15415/mjis.2016.42013.

Issue

Section

Articles