On The Numerical Solutions of Boundary Layer Equations of Williamson Fluid Past a Moving Plate


  • Manisha Patel Department of Mathematics, Sarvajanik College of Engineering & Technology, Surat-395001, Gujarat, INDIA
  • Jayshri Patel Department of Mathematics, Smt S. R. Patel Engg. College, Dabhi-Unjha-384 170, Gujarat, INDIA
  • M.G.Timol Department of Mathematics, Veer Narmad South Gujarat University, Magdalla Road, Surat-395007, Gujarat, INDIA.




Chyme, Finite difference method, Rivlin- Ericksen tensor, Williamson Fluid


Laminar boundary layer flow of Williamson fluid over a moving plate is discussed in this paper. The governing equations of the flow problem are transformed into similarity equations using similarity technique. The reduced equations are numerically solved by finite difference method. The graphical presentation is discussed.


Download data is not yet available.


Bird, R. B., Stewart, W. E. and Lightfoot, E. M. (1960). Transport phenomena, John Wiley, New York.

Dapra, I. and Scarpi, G.: Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. International Journal of Rock Mechanics and Mining Sciences 44(2), 271-278 (2007). https://doi.org/10.1016/j.ijrmms.2006.07.003

Hansen, A. G. and Na, T. Y.: Similarity solution of laminar, Incompressible boundary layer equations of non-Newtonian fluids. ASME Journal of basic engg. 90(1), 71-74 (1968). https://doi.org/10.1115/1.3605067

Lyubimov, D. V. and Perminov, A. V.: Motion of a thin oblique layer of a pseudoplastic fluid. Journal of Engineering Physics and Thermophysics 75(4), 920-924 (2002). https://doi.org/10.1023/A:1020371203799

Nadeem, S., Ashiq, S. and Ali, M.: Williamson Fluid Model for the Peristalic Flow of Chyme in small intestine. Mathematical Problems in Engineering (2012) 2012: 479087. https://doi.org/10.1155/2012/479087

Nadeem, S., Hussain, S. T. and Lee, C.: Flow of a Williamson Fluid over a stretching sheet. Brazilian Journal of Chemical Engineering 30(03), 619-625 (2013). https://doi.org/10.1590/S0104-66322013000300019

Srivastava, L. M., Srivastava, V. P. and Sinha, S. N.: Peristaltic transport of a physiological fluid: part I. Flow in non-uniform geometry. Biorheology 20(2), 153–166 (1983). https://doi.org/10.3233/bir-1983-20205

Srivastava, L. M. and Srivastava, V. P.: Peristaltic transport of blood: casson model —II. Journal of Biomechanics 17(11), 821–829 (1984). https://doi.org/10.1016/0021-9290(84)90140-4

Srivastava, V. P. and Saxena, M.: A two-fluid model of non-Newtonian blood flow induced by peristaltic waves. Rheologica Acta 34(4), 406–414 (1995). https://doi.org/10.1007/BF00367155

Srivastava, V. P.: Effects of an inserted endoscope on chyme movement in small intestine-a theoretical model. Applications and Applied Mathematics 2(2), 79–91 (2007).

Vasudev, C., Rao, U. R., Reddy, M. V. S. and Rao, G. P.: Peristaltic pumping of Williamson fluid through a porous medium in a horizontal channel with heat transfer. American Journal of Scientific and Industrial Research 1(3), 656-666 (2010). https://doi.org/10.5251/ajsir.2010.1.3.656.666

Williamson, R. V.: The flow of pseudoplastic materials. Industrial & Engineering Chemistry Research 21(11), 1108-1111 (1929). https://doi.org/10.1021/ie50239a035




How to Cite

Manisha Patel, Jayshri Patel, and M.G.Timol. 2020. “On The Numerical Solutions of Boundary Layer Equations of Williamson Fluid Past a Moving Plate”. Mathematical Journal of Interdisciplinary Sciences 8 (2):75-80. https://doi.org/10.15415/mjis.2020.82010.