A New Proof of the Lester’s Perimeter Theorem in Euclidean Space

Authors

  • Oğuzhan Demirel Afyon Kocatepe University
  • Leyla Aslan
  • Damla TOPAL

DOI:

https://doi.org/10.15415/mjis.2020.82007

Keywords:

Euclidean geometry, Euclidean motion, The Beckman-Quarles theorem

Abstract

An injection defined from Euclidean space  n-space E^n to itself which preserves the triangles of perimeter 1 is an Eucldean motion.   J. Lester gave two different proofs for this theorem in Euclidean plane [1] and Euclidean space [2]. In this study a new technique is developed for the proof of this theorem which is valid in both Euclidean plane  and Euclidean space.

Downloads

Download data is not yet available.

References

Beckman F. S. and Quarles D. A.: On isometries of Euclidean spaces. Proc. Amer. Math. Soc. 4, 810-815 (1953). https://doi.org/10.2307/2032415

Lester, J. A.: Euclidean plane point transformations preserving unit area or unit perimeter. Arch. Math. (Basel ) 45, 561-564 (1985). https://doi.org/10.1007/bf01194898

Lester, J. A.: Martin’s the or em for Euclidean-space and a generalization to the perimeter case. J. Geom. 27, 29-35 (1986). https://doi.org/10.1007/bf01230332

Downloads

Published

2020-03-30

How to Cite

Demirel, Oğuzhan, Leyla Aslan, and Damla TOPAL. 2020. “A New Proof of the Lester’s Perimeter Theorem in Euclidean Space”. Mathematical Journal of Interdisciplinary Sciences 8 (2):57-59. https://doi.org/10.15415/mjis.2020.82007.

Issue

Section

Articles