On Color Energy of Few Classes of Bipartite Graphs and Corresponding Color Complements

  • Prajakta Bharat Joshi Department of Mathematics, CHRIST (Deemed to be University), Bengaluru-560029, India
  • Mayamma Joseph Department of Mathematics, CHRIST (Deemed to be University), Bengaluru-560029, India
Keywords: Color eigenvalues, color energy, color complement

Abstract

For a given colored graph G, the color energy is defined as Ec(G) = Σλi, for i = 1, 2,…., n; where λi is a color eigenvalue of the color matrix of G, Ac (G) with entries as 1, if both the corresponding vertices are neighbors and have different colors; -1, if both the corresponding vertices are not neighbors and have same colors and 0, otherwise. In this article, we study color energy of graphs with proper coloring and L (h, k)-coloring. Further, we examine the relation between Ec(G) with the corresponding color complement of a given graph G and other graph parameters such as chromatic number and domination number.

AMS Subject Classification: 05C15, 05C50

Downloads

Download data is not yet available.

References

Adiga, C., Sampathkumar, E., Sriraj, M. A., Shrikanth, A. S.: Color Energy of a Graph. Proc. Jangjeon Math. Soc. 16, 335–351, (2013)
Adiga, C., Sampathkumar, E., Sriraj, M. A.: Color Energy of a Unitary Cayley Graph. Discuss. Math. Graph Theory. 4, 335–351, (2013) https://doi.org/10.7151/dmgt.1767
Betageri, K. S.: The Reduced Color Energy of Graphs. J. Comp. and Math. Sci. 7(1), 13-20, (2016)
Bhat, P. G., D’Souza, S.: Color Laplacian Energy of a Graph. Proc. Jangjeon Math. Soc. 18(3), 321–330,(2015)
Bhat, P. G., D’Souza, S.: Color Signless Laplacian Energy of Graphs. AKCE Int. J. of Graphs and Comb. 14(2), 142–148, (2017)https://doi.org/10.1016/j.akcej.2017.02.003
Chartrand, G., Zhang, P.: Coloring, distance and domination. In: Chromatic Graph Theory. CRC Press, New York (2008)https://doi.org/10.1201/9781584888017
Cvetkovic, D. M., Doob, M., Sachs, H.: Spectra of Graphs- Theory and Application, Academic Press, New York (1980)
Gutman, I.: The Energy of a Graph. Ber. Math. Stat. Sekt. Forschungsz. Graz.103, 1–22, (1978)
Gutman, I., Li, X., Zhang, J.: Graph Energy, Springer, New York (2012)
Gutman, I., Zhou, B.: Laplacian Energy of a Graph. Linear Algebra Appl. 414(1), 29–37, (2006) https://doi.org/10.1016/j.laa.2005.09.008
Hedetniemi S., Slater P., Haynes T. W. Fundamentals of Domination in Graphs, CRC press, (2013)
Indulal, G., Gutman, I., Ambat V.: On Distance Energy of Graphs. MATCH Comm. Math. Comp. Chem. 34(4), 461–472, (2010)
Jeyakokila, S. P., Sumathi, P.: A note on soEnergy of Stars, Bistars and Double stars graphs. Bull.Inter. Math. Virtual Inst. 6, 105-113, (2016)
Joshi, P. B., Joseph, M.: Further Results on Color Energy of Graphs. Acta Univ. Sapient., Info. 9, 191–131, (2017)https://doi.org/10.1515/ausi-2017-0008
Joshi, P. B., Joseph, M.: On New Bounds for Color Energy of Graphs. Int. J. Pure and Appl. Math. 117, 25–33, (2017)
Kanna, M. R., Kumar, R. P., Jagadeesh, R.: Minimum Covering Color Energy of a Graph. Asian Acad. Res.J. Multidiscip. 9 (8), 351–364, (2015)
https://doi.org/10.12988/ijma.2015.412382
Sampath kumar, E., Sriraj, M. A.: Vertex Labeled/Colored Graphs, Matrices and Signed Graphs. J. Comb. Info. System Sci. 38, 113–120, (2013)
Shigehalli, V. S., Betageri, K. S.: Color Laplacian Energy of Graphs. J. Comp. and Math. Sci. 6(9), 485–494, (2015)
West, D. B.: Introduction to Graph Theory, Pearson,New Jersey (2001)
How to Cite
Prajakta Bharat Joshi, and Mayamma Joseph. 1. “On Color Energy of Few Classes of Bipartite Graphs and Corresponding Color Complements”. Mathematical Journal of Interdisciplinary Sciences 8 (1), 7-14. https://doi.org/10.15415/mjis.2019.81002.
Section
Articles