Degree Based Multiplicative Connectivity Indices of Nanostructures

  • S Sunantha Department of Mathematics, Vivekananda College of Arts and Science (w), Sirkali, 637 305, Tamilnadu, India
  • P Gayathri Department of Mathematics, A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai, 609 305 Tamilnadu, India
Keywords: Topological indices, Molecular graphs, degree based topological index, Phenylenic, multiplicative indices, Naphatalenic, Anthracene and Tetracenic nanotubes


The Multiplicative topological indices of Phenylenic, Naphatalenic, Anthracene and Tetracenic Nanotubes are calculated. The indices like Multiplicative Zagreb, Multiplicative Hyper-Zagreb, Multiplicative Sum connectivity, Multiplicative product connectivity, General multiplicative Zagreb, Multiplicative ABC and Multiplicative GA indices are expressed as a closed formula for the known values of s, t. The proposed formulae will be very useful for the study of nanostructure in the field of nanotechnology.


Download data is not yet available.


Diudea, M. V., Florescu, M. S., Khadikar, P. V. (2006). Molecular Topology and its Applications, Eficon, Bucarest.

Diudea, M. V. (2010). Nanomolecules and Nanostructures–Polynomials and Indices, Univ. Kragujevac, Kragujevac.

Doslic, T., Furtula, B., Graovac, A., Gutman, I., Moradi, S., Yarahmadi, Z. (2011). On vertex – degree – based molecular structure descriptors, MATCH Commun. Math. Comput. Chem., 66, 613–626.

Eliasi, M., Iranmanesh, A., Gutman, I. (2012). Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68, 217–23.

Farahani, M. R. (2015). Computing Some Connectivity Indices of V-Phenylenic Nanotubes and Nanotori, IJAMML, 3(1), 79–87.

Farahani, M. R., Rajesh Kanna, M. R. (2015). Computing the Atom Bond Connectivity and Geometric-Arithmetic Indices of V-Phenylenic Nanotubes and Nanotori, American Journal of Computational and Applied Mathematics, 5(6), 174–17.

Gao, W., Jamil, M. K., Nazeer, W., Amin, M. (2017). Degree-Based Multiplicative Atom-bond Connectivity Index of Nanostructures, IAENG International Journal of Applied Mathematics, 47(4).

Gao, W., Rajesh Kanna, M. R., Suresh, E., Farahani, M. R. (2017). Calculating of Degree Based Topological Indices of Nanostructures, Geology, Ecology and Landscapes, 1(3), 173–183.

Gutman, I. (2011). Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka, 18, 17–23.

Kulli, V. R., Stone, B., Wang, S., Wei, B. Multiplicative Zagreb and Multiplicative hyper-Zagreb indices of polycyclic aromatic hydrocarbons, Benzenoidsystems, Preprint.

Kulli, V. R. (2016a). Multiplicative hyper-Zagreb indices and coindices of graphs, International Journal of Pure Algebra, 67, 342–347.

Kulli, V. R. (2016b). Multiplicative connectivity indices of certain nanotubes, Annals of Pure and Applied Mathematics, 12(2), 169–176.

Kulli, V. R. (2018). Edge Version of Multiplicative Atom Bend Connectivity Index of Certain Nanotubes and Nanotorus, International Journal of Mathematics And its Applications, 6(1-E), 977–982.

Liu, J. B., Gao, W., Siddiqui, M. K., Farahani, M. R. (2016). Computing three Topological Indices for Titania Nanotubes TiO2[m,n], AKCE International Journal of Graphs and Combinatorics, 13, 255–260.

Nadeem, I., Shaker, H. (2016). On Eccentric Connectivity Index of TiO2 Nanotubes, Acta Chim. Slov., 63, 363–368.

Randic, M. (1975): On a characterization of molecular branching, Journal of the American Chemical Society, 97(23), 6609–661.

Todeshine, R., Consonni, V. (2010). New vertex invariants and descriptors based on functions of vertex degrees, MATCH Commun. Math. Comput. Chem., 64, 359–372.

Veylaki, M., Nikmehr, M. J. (2015). Some degree-based connectivity indices of Nano-structures, Bulgarian Chemical Communications, 47(3), 872–875.

Vukicevic, D., Gutman, I., Furtula, B., Andova, V., Dimitrov, D. (2011). Some observations on comparing Zagreb indices, MATCH Communications in Mathematical and in Computer Chemistry, 66, 627–645.

How to Cite
S Sunantha, and P Gayathri. 2019. “Degree Based Multiplicative Connectivity Indices of Nanostructures”. Mathematical Journal of Interdisciplinary Sciences 7 (2), 149-55.