A Note on a Multiplier Class

Authors

  • R. G. VYAS Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India.

DOI:

https://doi.org/10.15415/mjis.2013.21008

Keywords:

Lipschitz condition, convolution product, multiplier class

Abstract

Untitled4.png

Downloads

Download data is not yet available.

References

Avdispahic, M. (1986) Concepts of generalized bounded variation and the theory of Fourier series, Inter. J. Math. and Math. Sci., V. 9, No. 2, 223-244. http://dx.doi.org/10.1155/S0161171286000285

Caveny James (1970) On integral Lipschitz conditions and integral bounded variation, J. London Math Soc. (2), 2, 346-352. http://dx.doi.org/10.1112/jlms/s2-2.2.346

De Leeuw, K. (1961), Banach spaces of Lipschitz functions, Studia Mathematica, 55-66.

Ghorpade, S. R. and Limaye, B. V. (2010) A Course in Multivariable Calculus and Analysis, Springer. http://dx.doi.org/10.1007/978-1-4419-1621-1

Vyas, R. G. and Darji, K. N. (2012) On Banach algebra valued functions of bounded generalized variation on one and several variables, Bulletin of Mathematics Analysis and Applications, V.4, 1, 181-189.

Vyas, R. G. (2013) Convolution function of several variables with generalized bounded variation, Analysis Mathematica, V. 39, 2, 153-161.

Zygmund, A. (1988) Trigonometric series. Vol. I, II. Reprint of the 1979 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge.

Downloads

Published

2013-09-06

How to Cite

R. G. VYAS. 2013. “A Note on a Multiplier Class”. Mathematical Journal of Interdisciplinary Sciences 2 (1):95-98. https://doi.org/10.15415/mjis.2013.21008.

Issue

Section

Articles