Common Fixed Point Theorem for Weakly Compatible Maps in Intuitionistic Fuzzy Metric Spaces using Implicit Relation
DOI:
https://doi.org/10.15415/mjis.2014.22017Keywords:
Intuitionistic fuzzy metric space, property E.A, implicit relationAbstract
In this paper, we use the notion of property E.A. in an intuitionistic fuzzy metric space to prove a common fixed point theorem which generalizes Theorem-2 of Turkoglu et al. (2006).
Downloads
References
Aamri, M. and Moutawakil, D. El. (2002), ‘Some new common fixed point theorems under strict contractive conditions’, J. Math. Anal. Appl., 270, pp.181-188.
http://dx.doi.org/10.1016/S0022-247X(02)00059-8
Alaca, C., Turkoglu, D. and Yildiz C. (2006), ‘Fixed points in Intuitionistic fuzzy metric spaces’, Chaos, Solitons & Fractals, 29, pp.1073-1078. http://dx.doi.org/10.1016/j.chaos.2005.08.066
Atanassov, K.(1986), Intuitionistic Fuzzy sets, Fuzzy sets and system, 20, pp.87-96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3
Coker, D.(1997), ‘An introduction to Intuitionistic Fuzzy topological spaces’, Fuzzy Sets and System, 88, pp. 81- 89. http://dx.doi.org/10.1016/S0165-0114(96)00076-0
Grorge, A. and Veeramani P.(1994), ‘On some results in fuzzy metric spaces’, Fuzzy Sets and Systems, 64, pp. 395- 399. http://dx.doi.org/10.1016/0165-0114(94)90162-7
Jungck, G.(1976), ‘Commuting mappings and fixed points’, Amer. Math. Monthly, 83, pp. 261-263. http://dx.doi.org/10.2307/2318216
Kramosil, I. and Michalek, J.(1975), ‘Fuzzy metric and Statistical metric spaces’, Kybernetica,11, pp.326-334.
Manro, S., Kumar, S. and Singh, S.(2010), ‘Common fixed point theorems in intuitionistic fuzzy metric spaces’, Applied Mathematics,1, pp.510-514.
http://dx.doi.org/10.4236/am.2010.16067
Manro, S., Bouharjera, H. and Singh, S.(2010), ‘A common fixed point theorem in intuitionistic fuzzy metric space by using sub-compatible maps’, Int. J. Contemp. Math. Sciences, 5(55), pp. 2699 – 2707.
Manro, S., Bhatia, S. S., and Kumar, S. (2010), ‘Common fixed point theorem for weakly compatible maps satisfying E.A. property in intuitionistic fuzzy metric spaces’, Punjab
University Journal of Mathematics, 42, pp. 51-56.
Manro, S., Kumar, S. and Bhatia, S.S.(2012), ‘Common fixed point theorems in Intuitionistic fuzzy metric spaces using occasionally weakly compatible maps’, J. Math. Comput. Sci., 2(2), pp.73-81.
Manro, S., Bhatia, S. S., and Kumar, S. (2012), ‘Common fixed point theorems for weakly compatible maps satisfying common (E.A.) property in intuitionistic fuzzy metric spaces using implicit relation’, Journal of Advanced Studies in Topology, 3(2), pp. 38-44.
Manro, S., Kumar, S., Kumar, S. and Bhatia, S. S.(2012), ‘Common fixed point theorem in intuitionistic fuzzy metric spaces using common (E.A) property and implicit relation’,
Journal of Advanced Studies in Topology, 3(3), pp. 60-68.
Park, J. H. (2004), ‘Intuitionistic fuzzy metric spaces’, Chaos, Solitons & Fractals, 22, pp.1039-1046. http://dx.doi.org/10.1016/j.chaos.2004.02.051
Park, J.S., Kwun, Y.C. and Park, J.H.(2005), ‘A fixed point theorem in the Intuitionistic fuzzy metric spaces’, Far East J. Math. Sci., 16, pp. 137-149.
Saadati R. and Park J.H.(2006), ‘On the Intuitionistic fuzzy topological spaces’, Chaos, Solitons & Fractals, 27, pp. 331-344. http://dx.doi.org/10.1016/j.chaos.2005.03.019
Schweizer, B. and Sklar, A. (1960), ‘Statistical metric spaces’, Pacific J. Math., 10, pp. 313-334. http://dx.doi.org/10.2140/pjm.1960.10.673
Turkoglu D., Alaca C., Cho Y.J. and Yildiz C.(2006), ‘Common fixed point theorems in Intuitionistic fuzzy metric spaces’, J. Appl. Math. & Computing, 22, pp. 411-424.
Downloads
Published
How to Cite
Issue
Section
License
Articles in Mathematical Journal of Interdisciplinary Sciences (Math. J. Interdiscip. Sci.) by Chitkara University Publications are Open Access articles that are published with licensed under a Creative Commons Attribution- CC-BY 4.0 International License. Based on a work at https://mjis.chitkara.edu.in. This license permits one to use, remix, tweak and reproduction in any medium, even commercially provided one give credit for the original creation.
View Legal Code of the above mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode
View Licence Deed here https://creativecommons.org/licenses/by/4.0/
Mathematical Journal of Interdisciplinary Sciences by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at https://mjis.chitkara.edu.in |