Fractals Generated by Various Iterative Procedures – A Survey

Authors

  • Renu Chugh Department of Mathematics, Maharishi Dayanand University, Rohtak
  • Ashish Department of Mathematics, Maharishi Dayanand University, Rohtak

DOI:

https://doi.org/10.15415/mjis.2014.22016

Keywords:

Julia Sets, Mandelbrot Sets, Cantor Sets, Sierpinski’s Triangle, Koch Curve

Abstract

These days fractals and the study of their dynamics is one of the emerging and interesting area for mathematicians. New fractals for various equations have been created using one-step iterative procedure, two-step iterative procedure, three-step iterative procedure and four-step iterative procedure in the literature. Fractals are geometric shapes that have symmetry of scale. In this paper, a detailed survey of fractals existing in the literature such as Julia sets, Mandelbrot sets, Cantor sets, etc have been given.

Downloads

Download data is not yet available.

References

Barnsley, M. F. (1988) Fractal modeling of real-world images in The Science of Fractal Images, Springer-Verlag, New York.

Barnlsey, M. F. (1988) Fractal Everywhere, Academic Press, Boston (1988), second edition (1993).

Beardon, A. F. (1991) Iteration of rational functions, Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-4422-6

Branner, B. and Hubbard, J. H. (1988) The Iteration of Cubic Polynomials Part I: The global topology of parameter space, Acta Math., (160)(3-4), 143-206.

http://dx.doi.org/10.1007/BF02392275

Branner, B. and Hubbard, J. H. (1992) The Iteration of Cubic Polynomials Part II: Patterns and para patterns, Acta Math., (169)(3-4), 229-325. http://dx.doi.org/10.1007/BF02392761

Bulaev, B. P. (2000) Phase-periodic structures of self-similar staircase fractals, Fractal, (8)(4), 323-335. http://dx.doi.org/10.1142/S0218348X00000378

Bunde, A. and Havlin, S. (1991) Fractals and disordered systems, Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-51435-7

Cantor, G. (1883) Uber unendliche linear Punktmannichfaltigkeiten, Part 5, Math. Ann., (21), 545-591. http://dx.doi.org/10.1007/BF01446819

Chauhan, Y. S. Rana, R. and Negi, A. (2010) New tricorn and multicorn of Ishikawa iterates, Int.J. Comput. Appl., (7)(13), 25-33. http://dx.doi.org/10.5120/1322-1676

Chauhan, Y. S. Rana, R. and Negi, A. (2010) New Julia sets of Ishikawa Iterates, Int. J. Comput.Appl., (7)(13) 34-42.

Crilly, A. J. Earnshaw, R. A., and Jones, H. (1991) Fractal and Chaos, Springer - Verlag, New York, Inc.

Crownover, R. M. (1995) Introduction to Fractals and Chaos, Jones and Barlett Publishers.

Devaney, R. L. (1992) A First Course in Chaotic Dynamical Systems, Addison Wesley Pub. Company, Inc., 75-79.

Douady, A. and Hubbard, J. H. (1984) Étude dynamique des pôlynomes complexes, Publications Mathematiques d’Orsay, Université de Paris-Sud.

Edgar, G. (2008) Measure Topology and Fractal Geometry, Springer Verlag, New York, USA. http://dx.doi.org/10.1007/978-0-387-74749-1

Epstein, A. and Yampolsky, M. (1999) Geography of the cubic connectedness locus: intertwining surgery, Ann. Sci. École Norm. Sup., (32)(2), 151-185.

http://dx.doi.org/10.1016/S0012-9593(99)80013-5

Falconer, K. (1990) Fractal geometry, John Wiley and sons.

Ferreirós, J. (1999) Labyrinth of thought: A History of Set Theory and Its Role in Modern Math. Springer Verlag, Birkhauser, 162-165.

Fleron, J. F. (1994) A note on the history of the Cantor set and Cantor functions, Math. Magz., (67), 136-140.

Frame, M. and Robertson, J. (1992) A generalized Mandelbrot set and the role of critical points, Computer and Graphics, (16)(1), 35-40. http://dx.doi.org/10.1016/0097-8493(92)90068-7

Geum, Y. H. and Hare, K. G (2009) Groebner basis, resultants and the generalized Mandelbrot set, Chaos Solitons Fractals, (42)(2), 1016-1023.

http://dx.doi.org/10.1016/j.chaos.2009.02.039

Gullick, D. (1992) Encounter with Chaos, Mcgraw Hill.

Gutfraind, R. Sheintuch, M. and Avnir, D. (1990) Multifractal scaling analysis of diffusion-limited reactions with Devil’s staircase and Cantor set catalytic structures, Chem. Phy.

Lett., (174)(1), 8-12. http://dx.doi.org/10.1016/0009-2614(90)85318-7

Horiguchi, T. and Morita, T. (1984) Devil’s staircase in one-dimensional mapping, Physica A, (126)(3), 328-348. http://dx.doi.org/10.1016/0378-4371(84)90205-X

Horiguchi, T. and Morita, T. (1984) Fractal dimension related to Devil’s staircase for a family of piecewise linear mappings Physica A, (128)(1-2), 289-295.

http://dx.doi.org/10.1016/0378-4371(84)90092-X

Horn, A. N. (1991) IFS and the interactive design of tiling structures in Fractals and Chaos, Springer-Verlag, New York, Inc., 119-144.

Lee, J. S. (1998) Periodicity on Cantor sets, Comm. Korean Math. Soc., (13)(3), 595-601.

Lei Tan (1990), Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., (134)(3), 587-617.

Liaw, S. S. (1998) The parameter spaces of the cubic polynomials, Fractals, (6)(2), 181-189. http://dx.doi.org/10.1142/S0218348X98000223

Mandelbrot, B. B. (1982) The Fractal Geometry of Nature, Freeman.

Mandelbrot, B. B. (1991) The Fractal Geometry of Nature, Birkhäuser Verlag, German.

Mandelbrot, B. B. (1998) Multifractals and 1/f Noise, Springer-Verlag, Berlin.

Mandelbrot, B. B., and Evertsz, C. J. G. (1996) Exactly self-similar left-sided multifractals in Fractals and Disordered Systems, Springer-Verlag, Heidelberg, 376-400.

http://dx.doi.org/10.1007/978-3-642-84868-1_10

Mann, R. (1953) Mean value methods in iteration, Proc. Amer. Math. Soc., (4), 506-510. http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3

Milnor, J. (1990) Dynamics in One Complex Variable: Introductory Lectures, Stony Brook Institute For Mathematical Sciences Reprint.

Peitgen, H. Jürgens, H. and Saupe, D. (1992) Fractals for the Classroom, Part One: Introduction to Fractals and Chaos, Springer-Verlag, New York, Inc.

http://dx.doi.org/10.1007/978-1-4757-2172-0

Peitgen, H. Jürgens, H. and Saupe, D. (1992) Fractals For The Classroom. Part 2: Complex systems and Mandelbrot set, Springer-Verlag, Berlin. http://dx.doi.org/10.5860/CHOICE.30-4455

Peitgen, H. O. Jurgens, H. and Saupe, D. (2004) Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York.

Peitgen, H. O. and Richter, P. H. (1986) The Beauty of Fractals, Springer-Verlag, Heidelberg.

Peitgen, H. and Saupe, D. (1988) The Science of Fractal Images, Springer-Verlag.

Rahman, A. The Cantor set and its applications in nonlinear dynamics and Chaos, http://web.njit.edu/~ar276/papers/Dynamical.pdf

Rani, M. (2002) Ph. D. Thesis, Iterative Procedures in Fractal and Chaos, Gurukala Kangri Vishwavidyala, Hardwar, India.

Rani, M. and Kumar, V. (2004) Superior Julia set, J. Korean Soc. Math. Edu. Res. Ser. D, (8)(4), 261-277.

Rani, M. (2011) Cubic superior Julia sets, in: Proc. European Computing Conference, 80-84.

Rani, M. and Kumar, V. (2004) Superior Mandelbrot set, J. Korean Soc. Math. Edu. Res. Ser.D, (8)(4), 279-291.

Rani, M. and Prasad, S. (2010) Superior Cantor sets and superior Devil’s staircases, Int. J. Artif.Life Res., (1)(1), 78-84.

Reeve, D. E. Mandelbrot (1991) Julia sets and nonlinear mappings in Fractals and Chaos, Springer-Verlag, New York, Inc., 35-42.

Shaver, C. An Exploration of the Cantor set, Mathematics Seminar, http://www.rose-hulman.edu/mathjournal/archives/2010/vol11-n1/ paper1/v11n1-1pd.pdf.

Smith, H. J. S. (1875) On the integration of discontinuous functions, in Proc. London Math. Soc., (6)(1), 140-153. http://dx.doi.org/10.1112/plms/s1-6.1.140

Tricot, C. (1995) Curves and Fractal dimension, Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-4170-6

Tsuji, M. (1953) On the capacity of general Cantor sets, J. Math. Soc. Japan, (5), 235-252. http://dx.doi.org/10.2969/jmsj/00520235

Downloads

Published

2014-03-03

How to Cite

Renu Chugh, and Ashish. 2014. “Fractals Generated by Various Iterative Procedures – A Survey”. Mathematical Journal of Interdisciplinary Sciences 2 (2):195-208. https://doi.org/10.15415/mjis.2014.22016.

Issue

Section

Articles