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1. IntROductIOn

Shannon entropy and its applications is an essential and well known concept in 
the area of information theory. For an absolutely continuous random variable  
X with probability density function f(x) it is defined as, 

 H X f x f x dx( ) ( ) log ( ) ,=−
∞

∫0
 (1)

where ‘log’ denotes the natural logarithm. The measure (1) is called differential 
entropy. One of the main drawbacks of this measure is that it may not always be 
non negative and if it is negative then H(X) is no longer an uncertainty measure. 
kinchin [11] removed this limitation by introducing a convex function φ, and 
defined the generalized entropy measure as

 H X f x f x dxφ φ( ) ( ) ( ( )) ,=−
∞

∫0
 (2)

where φ( )1 0= . For two particular choices of φ,( )2  can be expressed 
respectively as the harvard and Charvat [9] and renyi [17] entropy measures, 
given respectively by
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 H X f x dx and1
0

1

1
1 0 1α α

α
α α( ) ( ( ) ),=

−
− > ≠

∞

∫  (3)

and

 H X f x dx and2
0

1

1
0 1α α

α
α α( ) log( ( ) ), .=

−
> ≠

∞

∫   (4)

If α→1,  then equations (3) and (4) reduce to (1).  Another generalized the 
entropy of order α and type β , refer to Verma [21], is defined by

 H X f x dx and( , ) ( ) log( ( ) ),( ) .α β α β

β α
β α β β=

−
− < < ≥+ −

∞

∫
1

1 11

0
 (5)

When β=1  and α→1,  then (5) reduces to (1). It may be noted that although 
(1) is negative for some distributions, but by choosing appropriate value of α 
for (3) and (4), and of α and β  for (5), these generalized entropies can be made 
non negative.

In survival analysis and life testing, one has information about the current 
age of the component under consideration. In such cases, the age must be taken 
into account while measuring uncertainty. Shannon entropy is unsuitable in 
such situations and must be modified to take the age into account. As a solution, 
ebrahimi [5] introduced the concept of residual entropy to measure the uncertainty 
of such systems. For a random lifetime X, at time t the residual entropy is defined 
as the differential entropy of [ | ],X t X t− >  and is given by

 H X t
f x

F t

f x

F t
dx

t
( ; )

( )

( )
log

( )

( )
,=−











∞

∫  (6)

where F t F t( ) ( )= −1  is the  survival  function  of X. In the same spirit, for a 
system surviving up to age t, Nanda and Paul [13] introduced generalized form 
of H(X;t) and redefined (3) and (4), respectively as 

  H X t
f x

F t
dx

t
1

1

1
1α

α

α
( ; )

( )

( )
=
−

−






















∞

∫  (7)

and

 H X t
f x

F t
dx

t
2

1

1
α

α

α
( ; ) log

( )

( )
.=

−











∞

∫  (8)

When α→1, (7) and (8) reduce to (6). Similarly, Baig and Dar [1] redefined 
(5) and introduced the concept of generalized residual entropy of order α  and 
type β  given by
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 H X t
f x

F t
dx

t

( , ) ( ; ) log
( )

( )
,(α β

α β

α ββ α
β=

−










−

+ −

+ −

∞

∫
1 1

1
11 1) .< < ≥α β βand  (9)

If β=1  and α→1, (9) reduces to (6). 
In recent years, a lot of work has been focused on H(X;t). Di Crescenzo 

and Longobardi [3] introduced the notions of “weighted residual entropy”, 
that are suitable to describe dynamic information of random lifetimes. 
Baig and Dar [1] characterized some life time models and defined new 
classes of life time distributions using generalized information measure 
for residual lifetime distributions. Taneja et. al. [20]considered a dynamic 
measure of inaccuracy between two residual lifetime distributions. kumar 
et. al. [12] introduced a length biased weighted residual inaccuracy 
measure between two residual lifetime distributions over the interval 
(t, ∞) and derived a lower bound to the weighted residual inaccuracy measure. 
Sunoj and Linu [19] extended cumulative residual renyi’s entropy into the 
bivariate set-up and proved certain characterizing relationships to identify 
different bivariate lifetime models. Psarrakos and Navarro [15] considered 
dynamic generalized cumulative residual entropy using the residual lifetime.  
Das [4] extended the concept of weighted generalized entropy, based upon the 
concept of generalized entropies given by havard and Charvat [9] and renyi 
[17] and discussed the properties of weighted generalized residual entropy.

In this  paper,  we propose  the  concept  of weighted  generalized  
residual  entropy  of order α  and type β  and show that the proposed  measure  
characterizes the distribution function  uniquely.  Section 2 is devoted to 
weighted generalized entropy along with an example.  In Section 3 we introduce 
weighted generalized form of residual entropy and prove a characterization 
theorem for this.  In Section 4, some concluding remarks with future aspects 
have been included.

In this paper, the terms “increasing” and “decreasing” is not used in strict 
sense and following notions are used:
X   :  An absolutely continuous non-negative random variable representing 

lifetime of the system;
F(x)  : P[X ≤ x], probability distribution function of X;
F t( ) : P[X > x] = 1 − F (t), survival function of X ;
f(x)   : Derivative of F (x), probability density function of X;

r
x
(t)   : f t

F t

( )

( )
the hazard function, or failure rate, of X;

[A|B]:  Any random variable whose distribution is identical to the conditional 
distribution of A given B;
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2. WEIGhtEd GEnERAlIzEd EntROpy

Fisher [6] and rao [16] introduced the concept of weighted distribution and 
provided an approach to deal with model specification and data interpretation 
problems. Fisher [6] studied the influence of methods of ascertainment 
on the distribution form of recorded observation, and rao [16] modelled 
statistical data by weighted distributions where standard distributions 
were not appropriate due to various reasons like unobserved or damaged 
values etc. For more results on weighted distributions refer to Oluyede and 
Terbeche [14], Ghitany and Al-Mutairi [7], kareema and Ahmad [10]. 

The probability function of weighted random variable X
w
 associated to the 

random variable X with weight function w(x), probability density function 
f ( x ) and survival function F x( ),  is defined by

 f x
w x

E w x
f x xw ( )

( )

( ( ))
( ), ,= ≤ <∞0  (10)

where w ( x )  is positive for all value of x≥ 0  and 0< <∞E w X( ( )) .  
On particular choices of weight function w(x) we have different weighted 
models.  For example, when w(x)=x, resulting distribution is called length-
biased distribution and the associated probability density function of length 
biased random variable X

w
is defined as

 f x
x

E X
f xw ( )

( )
( ),=  (11)

and the corresponding  length biased survival function is defined as

 F x
E X X x

E X
F xw ( )

( | )

( )
( ).=

>
 (12)

In agreement with Belis and Guiasu [2] and Guiasu [ 8 ] , weighted Shannon 
entropy can be obtained from (1), by applying weight to the probability density 
function and is defined by

 H x f x f x dxw w w( ) ( ) log ( ) .=
∞

∫0  

On substituting the values of weighted functions, we get

 H x
E X X

E X

E X E X

E X E X
x f x f x dxw ( )

( log )

( )

( ) log ( )

( ) ( )
( ) log ( ) .=− + −

∞1
0∫∫  (13)
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Similarly from (5), weighted generalized entropy of order α  and type β  is 
given by

 H X f x dxw w
( , ) ( ) log ( ) .α β α β

β α
=
−









+ −
∞

∫
1 1

0
 (14)

Substituting for f xw ( )  from (11) in (14), we get

 H X
x f x

E X
dxw

( , ) ( ) log
( )

( )
α β

α β α β

α ββ α
=
−











+ − + −

+ −

∞

∫
1 1 1

10 
.  (15)

When β=1  and α→1,  then (15) reduce weighted Shannon entropy (13).
Example 2.1 Let X and Y be the random variable with probability density 
functions,

 f x
x x

otherwise
( )

,

,
=

≤ <




2 0 1

0
 

and

 f y
y y

otherwise
( )

( ),

, .
=

− ≤ <




2 1 0 1

0
 

For α= 3/2 and β =2, generalized entropy of order α  and type β  of random 
variables X and Y is, H X H Y( , ) ( , )( ) ( ) . .α β α β= = 0 96021  Further, weighted 
generalized entropy of order α  and type β  of random variables X and Y is 
H Xw

( , ) ( ) .α β =1 90954 and H Yw
( , ) ( ) .α β = 0 604189 . We observed that in this case 

generalized entropies of order α  and type β  of random variables X and Y are 
same but weighted generalized entropies of order α  and type β  about the 
predictability of X is more than that of Y.

3. WEIGhtEd GEnERAlIzEd REsIduAl EntROpy

Di Crescenzo and Longobardi [3] introduced the concept of weighted 
generalized residual entropy and is given by

 H X t
E X X t

x
f x

F t
x

f x

E X X t F tw ( ; )
( | )

( )

( )
log

( )

( | ) ( )
=−

> >











1


∞

∫ dx
t

.  (16)

The weighted residual entropy functions of first and second kind corresponding 
to (7) and (8), according to S. Das [4], are respectively given as

 H X t
E X X t

x
f x

F t
dxw

t
1

1

1
1

1α
α

α
α

αα
( ; )

[ ( | )]

( )

( )
=

−







 − >




 ∞

∫





 (17)

and
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 H X t x
f x

F t
dxw

t
2

1

1
α α

α

αα
α

( ; ) log
( )

( )
=
−

















−

∞

∫ 11−
>

α
log( ( | )).E X X t  (18)

When α→1,  (17) and (18) reduce to (16).
Next, we introduce the concept of weighted generalized residual entropy 

of order α  and type β, given by

 H X t
E X X t

x
f x

F
w

( , ) ( ; ) log
[ ( | )]

( )

(
α β

α β

α β
α β

α ββ α
=
− > + −

+ −
+ −

+ −

1 1
1

1
1

1 tt
dx

t )
.

∞

∫








  (19)

When β = 1 and α → 1, then (19) reduces to (16).  Further, we have

     

x
f x

F t
dx y dy

f x

t

x
α β

α β

α β

α β

α β

α β+ −

+ −

+ −

∞
+ −

+ −

∫ ∫= + − ( )1

1

1

2

0

1

1
( )

( )
( )

( ))

( )
.

( )
(

F t
dx

y dy
f x

t

t

x

y dy
t

α β

α β

α β

α β α β

+ −

∞

+ −

+ −

∫

∫= + − + − −( )∫

1

2

1

1
2

0

))

( )
.

( )
( )

F t
dx

y dy
f x

F

t

t

α β

α β

α β

α
α β

+ −

∞

+ −

+ −

+

∫

∫













( )= + −

1

2

0

1

1
ββ

α β

α β

α β
−

+ −

+ −

∞∞

− + −∫( )









∫∫ 1

1

1

2

( )

( )

( )
.

t
dx

f x

F t
dxy dy

t

x

tt

== + −
+ −

−
+ − + −

+ −

∞












 ∫( )

( )

( )
α β

α β

α β α β

α β
1

1

1 1

1

t f x

F t
dx

t




+−

+ − + −

=

∞

=

∞

∫∫
1

1

2 1

F t
y f x dx dy

x yy tα

α β α β

( )
( ) .

 (20)

equations (9) and (19) can respectively be rewritten as

  f x dx F t e H X t

t

α β α β β α α β+ − + − −
∞

=∫ 1 1( ) ( ) ( ) ( ; )( , )

 (21)

and

 H X t x
f x

F t
dx

w
t

( , ) ( ; ) log
( )

( )

α β α β

α β

α ββ α
=
−

+ −

+ −

+ −

∞

∫










1 1

1

1 −
+ −

−
>

α β

β α

1
log( ( | )).E X X t  (22)

Substituting the results from (20) and (21) in (22), weighted generalized 
residual entropy of order α  and type β  can be rewritten as

 

H X t

t e y
F

w

H X t

( , )

( ) ( ; )

( ; )

log ( )
( , )

α β

α β β α α β

β α
α β

α β

=

−
+ + −+ − − + −1

11 2

αα β

α β

β α
α β

α β

β

+ −

+ −

−
∞

∫










−
+ −

1

1

1

( )

( )

( ) ( ; )
( , )y

F t
e dyH X y

t

−−
>

α
log( ( | )).E X X t

 (23)
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Next, we show that the proposed weighted generalized residual entropy 
of order α and type β characterizes the distribution function uniquely. In this 
context we prove the following result.
theorem: Let X be an absolutely continuous random variable having 
probability density function f(x) and survival function F t( ) . If H X t( , ) ( ; )α β  
is increasing in t, then H X tw

( , ) ( ; )α β uniquely determines the survival function 
F t( ).

Proof: Rewriting (23) as

 e H X t
I t

g tw
( ) ( , ) ( ; )

( )

[ ( )]
,β α α β

α β
−

+ −=
1  (24)

where g t E X X t( ) ( | ),= >  and

 

I t t e

y
F y

F

H X t( )

( )
( )

(

( ) ( ; )( , )

=

+ + −

+ − −

+ −
+ −

+ −

α β β α

α β
α β

α β

α β

α β

1

2
1

1
1

tt
e dyH X y

t )
.( ) ( ; )( , )β α α β−

∞

∫  (25)

 Differentiating (25) w.r.t. t, we have

 

′ = −

+ + −

+ − −I t t
d

dt
H X t e

r

H x t( ) ( ) ( ; )

( )

( , ) ( ) ( ; )( , )α β α β β αβ α

α β

α β1

21 xx
t

H X yt y
F y

F t
e dy( )

( )

( )
( ) ( ; )( , )α β

α β

α β
β α α β+ −

+ −

+ −

∞
−∫







2

1

1 

,
 (26)

where r t
f t

F tx ( )
( )

( )
= . Differentiating (24) w.r.t. t, we get

 d

dt
e H X t

g t

g t
I t

I t

g tx
β α α β

α β

α β−
+=−

+ − ′
+

′( , ) ( ; )
( ) ( )

[ ( )]
( )

( )

[ ( )]

1
αα β+ −1

.  (27)

rearranging (19), we have

 e g t H X t
g t

x
f x

F tw
( ) ( , )( ) ( ; )

[ ( )]

( )

(
β α α β

α β
α β

α β

α β
−

+ −
+ −

+ −

+ −=
1

1
1

1

1 ))
.dx

t

∞

∫  (28)

Differentiating (28) w.r.t. t, we have following result,

 

d

dt
e H X t

g t

g t
y

f x
w

( ) ( , ) ( ; )
( ) ( )

[ ( )]

(β α α β
α β

α β
α βα β−

+
+ −

+ −

=−
+ − ′1 1

1 ))

( )

( ) ( )

[ ( )]

( )

F t
dx

r t

g t
y

f x

F

t

x

α β

α β
α β

α β

α

α β

+ −

∞

+ −
+ −

+ −

+

∫

+
+ −

1

1
1

11
ββ

α β

α β
α β

−

+ −

+ −
+ −

∞
−∫ 1

1

1
1

( ) [ ( )]
[ ( )] .

t
dy

t

g t
r tx

t

 (29)
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using the results from equations (26), (27) and (29) and then rearranging the 
terms, we get

  

( )[ ( )]

[ ( )]

( )

( )
( )

α β

α β
α β

α β

α β

+ − ′

+
+ −

+ −

+ −
−∞∫


1 1

1

1

g t

g t

y
f y

F t

dy I tt














+
− + −

+ −
−( )

[ ( )]

( , )
( ; )

( )
( ,β α α β

α β
α β β α α βt

g t

d

dt
H X t e

H
1

1

))
( ; )

( ) ( )

[ ( )]
( )

( )

X t

r
x

t

g t

y
F y

F

+
+ −

+ −
+ − + −

+ −

+ −

α β

α β
α β α β

α β

α β

1

1
1

2
1

11

1
1

( )

( )
( , )

( ; )

( )

t

e
H X y

dyt

y
f y

β α α β

α β
α β

−∞∫

− + −
+ −























FF t

dyt
t

g t

r
x

t
α β

α β

α β
α β

+ −
∞∫ +

+ −

+ −
+ − =







1

1

1
1

0
( ) [ ( )]

[ ( )]

  

For fixed t r tx> 0, ( )   is the solution of A x( )= 0 , where A(x) is,

 

A x
g t

g t
y

f y

F t
dy I t

t
( )

( )[ ( )]

( )

( )

( )
( )=

+ − ′
−+

+ −
+ −

+ −

α β
α β

α β
α β

α β

1 1
1

1

∞∞

+ −

+ −
−

∫












+
−( )

[ ( )]
( ; )( , ) ( ) ( ,β α α β

α β
α β β α αt

g t

d

dt
H X t e H

1

1

ββ

α β
α βα β

α β
α β

α β

) ( ; )

( )

[ ( )]
( )

( )

(

X t

x

g t
y

F y

F t

+

+ −
+ −+ −

+ −
+ −

+ −

1
1

1
2

1

1 ))
[ ]

( )

( )

( ) ( ; )( , )

e dy

y
f y

F t
dy

H X y

t

t

β α

α β
α β

α β

α β−
∞

+ −
+ −

+ −

∫






− 1
1

1

∞∞ + −

+ −
+ −∫





 +

t

g t
x

α β

α β
α β

1

1
1

[ ( )]
.

 (30)

Differentiating (30) w.r.t. x, we have 

 ′ = + − − + −+ −

+ −
+ −

+ −

+

A x t
g t

x
g t

y

( ) ( )
[ ( )]

( )
[ ( )]

α β α βα β

α β
α β

α β

α

1 11

1
2

1

ββ
α β

α β

α β
α β

α

α β−
+ −

+ −

∞

+ −
+ −

+

− + −

×

∫






1
1

1

2
1

1
f y
F t

dy

y
F y
F

t

( )
( )

( )

( )
ββ

β α α β

−
−

∞

∫




1( )

[ ] .( ) ( ; )( , )

t
e dyH X y

t
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Further, for ′ =A x( ) 0 , the value of x can be obtained as,

x
t

y
f y

F t
dyt=

+ −
+ −

+ −

+ −
∞∫

− + −















1

1
1

1

1

1

α β
α β

α β

α β

α β

( )

( )

( ) yy
F y

F t
t e

H X y
dyα β

α β

α β
β α α β+ −

+ −

+ −
∞∫

−













2
1

1

( )

( )

( ) ( , ) ( ; )



+ −

1

2α β
.

For x=0, from equation (30) we have,

A
g t

g t
y

f y

F t
dy I tt( )

( ) ( )

[ ( )]

( )

( )
( )0

1 1
1

1
=

+ − ′
+

+ −
+ −

+ −
−

α β
α β

α β
α β

α β
∞∞
∫
















+
− + −

+ −
−( )

[ ( )]

( , )( ; ) ( ) (β α α β

α β
α β β αt

g t

d

dt
H X t e H

1

1

αα β, )( ; ).X t

To prove the theorem we discuss the following two cases:

case I: For β β α β> − < <1 1, ,  we have A( )0 0> . Further, H X t( , ) ( ; )α β  is 
increasing in t and A( ) ,∞ =∞  then 

 ′′ = + − + −
+ −

+ −
+ −A x

t

g t
x( ) ( )( )

[ ( )]
,α β α β

α β

α β
α β1 2

1

1
3

is also non-negative. Therefore, ′A x( ) is increasing in t and 
′ = ′ ∞ =∞A t A( ) , ( ) .0 0 Also, A x( )≤ 0 for 0 0< ≤x t  and ′ ≥A x( ) 0  for 

x t≥ 0 .  Thus, we can say that x r tx= ( )  is the unique solution of A x( ) .= 0

case II: Similarly, for β β α β< − < <1 1, , we have A( )0 0< . Further, if 
H X t( , ) ( ; )α β is increasing in t  and A( ) ,∞ =−∞  then proceeding as in case I, 
we can interpret that x r tx= ( ) is unique solution of A x( ) .= 0
Therefore, from these two cases it can be concluded that if H X t( , ) ( ; )α β  
is increasing in t> 0  and A x( )= 0 , then x r tx= ( )  is the unique solution 
of A x( ) .= 0  Thus, H X tx

( , ) ( ; )α β  determines x r tx= ( )  uniquely.  hence, the 
result follows as x r tx= ( ) uniquely determine F t( ).

Next, we define a class of non-parametric class of distribution on the 
basis of the weighted residual entropy introduced. Based on the monotonicity 
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property of weighted entropies (17) and (18) ,  Di Crescenzo and Longobardi 
[3] defined two non-parametric classes of distributions. Similarly, here we 
introduce a non-parametric class of distribution.
Definition 3.1 A random variable X is said to have decreasing (or increasing) 
weighted uncertainty residual life of order α  and type β  if H X tx

( , ) ( ; )α β  
is decreasing (or increasing) in t≥ 0.

There exist distributions which are not monotone in terms of H X tw
( , ) ( ; ),α β

it can be shown by following counter example.
Counter example 3.1 Let X be a random variable with probability density 

function f x
x

x( )
( )

, .=
+

≥
2

1
0

3

Then the corresponding survival function is 

F x
x

x( )
( )

, .=
+

≥
1

1
0

2

If α=3/2 and β= 2,  for x≥ 0,  we see that H X t a tw
( , ) ( ; ) ( ),α β =  say, is not 

monotone in 0 0 5≤ ≤t .  as shown in Figure 1.

4. cOnclusIOn

In this paper, we have proposed and studied the concept of weighted generalized 
residual entropy of order α  and type β . This proposed residual information 
measure characterizes the distribution function uniquely. Weighted generalized 

Figure 1:
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information measures play an essential role in modelling of statistical data 
which includes certain amount of damaged or unobserved values. The measure 
introduced here can be of interest in such type of problems.
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AppEndIX

CALCuLATIONS
Input: (1/(2-3/2))log[Integrate[( 2x)^(3/2+2-1),{x,0,1}]]

Output: 2 Log[(8 2 )/7]

Input: n[2 log[(8 2 )/7]]
Output: 0.96021
Input:(1/(2-3/2))log[(1/(Integrate[(2x^2),{x,0,1}])^(3/2+2-1))
Integrate[x^(3/2+2-1)( 2x)^(3/2+2-1),{x,0,1}]]

Output: 2 Log[(3 3 )/2]

Input: n[2 log[(3 3 )/2]]
Output: 1.90954
Input: (1/(2-3/2))log[Integrate[( 2(1-x))^(3/2+2-1),{x,0,1}]]

Output: 2 Log[(8 2 )/7]

Input: n[2 log[(8 2 )/7]]
Output: 0.96021
Input: (1/(2-3/2))log[(1/(Integrate[ (2x(1-x)), {x, 0,1}])^(3/2+2-
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            1))Integrate[x^(3/2+2-1)( 2(1-x))^(3/2+2-1),{x,0,1}]]

Output: 2 Log[45/128 3

2
]

Input: n[2 log[45/128 3

2

 ]]
Output: 0.604189
Input: Integrate[ 6x/(1+x)^4,{x,t,Infinity}]
Output: Conditionalexpression[(1+3 t)/(1+t)3,Im[t]¹0||re[t]>-1]



kumar, A
Taneja, hC
Chitkara, Ak
kumar, V

14

Input: (1/(2-3/2))log[(1/Integrate[x (2/(1+x)^3), {x, t, Infinity}])^(3/2+2- 
           1)(Integrate[ (x (2/(1+x)^3))^(3/2+2-1),{x,t,Infinity}])]
Output: Conditionalexpression[2 Log[( 4 2  ((1+t)^2/(1+2 t))5/2 (32+2 t (80+t 
(160+t (160-

 

429 2 40 143

4 13 2 3

3 3

3 3

t

I t

t

I t

t

I t

t

I t

( )
(

( )

( ) ( )
)) /

+
− − +

+

+ − +
+

+
+

t

t ( 2 t 0003 1

0

5( ],

re[ ]

+

≠ ≠

t)

t IM [t] 0and

Input: plot[%,{t,0,0.5}]
Output: 
Input: plot[%2,{t,0,0.5},plotstyledirective[RGBcolor[0.32,0.15,0.],Opac
ity[1.],Absolutethickness[1.195]],Axeslabel{style[t,large],style[a[t],la
rge]}]
Output: 


