A Ring-shaped Region for the Zeros of a Polynomial

M. H. GULZAR ${ }^{1}$, A. W. MANZOOR ${ }^{2}$

Department of Mathematics, University of Kashmir, Srinagar

Email: gulzarmh@gmail.com

Received:July 19, 2015| Revised: December 12, 2015| Accepted: February 11, 2016
Published online: March 30, 2016
The Author(s) 2016. This article is published with open access at www.chitkara.edu.in/publications
Abstract: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n .Then according to Cauchy's classical result all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1+A$, where $A=\max _{0 \leq j \leq n-1}\left|\frac{a_{j}}{a_{n}}\right|$. The purpose of this paper is to present a ring-shaped region containing all or a specific number of zeros of $\mathrm{P}(\mathrm{z})$.

Mathematics Subject Classification: 30C10, 30C15.
Keywords: Polynomial, Region, Zeros.

1. INTRODUCTION

The following result known as Cauchy's Theorem [2] is well known in the theory of distribution of zeros of polynomials:
Theorem A. All the zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n lie in the circle $|z| \leq 1+M$, where $M=\max _{0 \leq j \leq n-1}\left|\frac{a_{j}}{a_{n}}\right|$.

Several generalizations and improvements of this result are available in the literature. Mohammad [3] used Schwarz Lemma and proved the following result:
Theorem B. All the zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n lie in $|z| \leq \frac{M}{\left|a_{n}\right|} \quad$ if $\quad\left|a_{n}\right| \leq M$, \quad where $M=\max _{|z|=1}\left|a_{n} z^{n-1}+\ldots \ldots+a_{0}\right|=\max _{|z|=1}\left|a_{0} z^{n-1}+\ldots \ldots+a_{n-1}\right|$. $\begin{array}{r}\text { Mathematical Journal of } \\ \text { Interdisciplinary Sciences } \\ \text { In this paper, we No. 2, }\end{array}$

Gulzar, MH Manzoor, AW

Theorem 1.All the zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n lie in
the ring-shaped region $r_{1} \leq|z| \leq r_{2}$, where $r_{1}=\frac{\left[R^{4}\left|a_{1}\right|^{2}\left(M-\left|a_{0}\right|\right)^{2}+4\left|a_{1}\right|^{2} R^{2} M^{3}\right]^{\frac{1}{2}}-\left|a_{1}\right| R^{2}\left(M-\left|a_{0}\right|\right)}{2 M^{2}}$, $r_{2}=\frac{2 M_{1}^{2}}{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}$, $M=\max _{|z|=R}\left|a_{n} z^{n}+\ldots \ldots+a_{1} z\right|$, $M_{1}=\max _{|z|=R}\left|a_{0} z^{n}+\ldots \ldots+a_{n-1} z\right|$,
R being any positive number.
Theorem 2. The number of zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n in the ring-shaped region $r_{1} \leq|z| \leq \frac{R}{c}, 1<c \leq R$, does not exceed

$$
\frac{1}{\log c} \log \left(1+\frac{M}{\left|a_{0}\right|}\right)
$$

where M is as in Theorem 1.

2. LEMMAS

For the proofs of the above theorems we make use of the following results:
Lemma1. Let $\mathrm{f}(\mathrm{z})$ be analytic in $|z| \leq 1, \mathrm{f}(0)=\mathrm{a}$, where $|a|<1, f^{\prime}(0)=b$ and $|f(z)| \leq 1$ for $|z|=1$. Then, for $|z| \leq 1$,

$$
|f(z)| \leq \frac{(1-|a|)|z|^{2}+|b||z|+|a|(1-|a|)}{|a|(1-|a|)|z|^{2}+|b||z|+(1-|a|)}
$$

The example

$$
f(z)=\frac{a+\frac{b}{1+a} z-z^{2}}{1-\frac{b}{1+a} z-a z^{2}}
$$

shows that the estimate is sharp.
Lemma 1 is due to Govil, Rahman and Schmeisser [1].

Lemma 2. Let $\mathrm{f}(\mathrm{z})$ be analytic for $|z| \leq R, \mathrm{f}(0)=0, f^{\prime}(0)=b$ and $|f(z)| \leq M$ for $|z|=R$.
Then, for $|z| \leq R$,

A Ring-shaped
Region for the Zeros of a

Polynomial

$$
|f(z)| \leq \frac{M|z|}{R^{2}} \cdot \frac{M|z|+R^{2}|b|}{M+|b||z|}
$$

Lemma 2 is a simple deduction from Lemma 1.
Lemma 3.If $\mathrm{f}(\mathrm{z})$ is analytic for $|z| \leq R, f(0) \neq 0$ and $|f(z)| \leq M$ for $|z|=R$, then the number of zeros of $\mathrm{f}(\mathrm{z})$ in $|z| \leq \frac{R}{c}, 1<c<R$ is less than or equal to $\frac{1}{\log c} \log \frac{M}{|f(0)|}$.

Lemma 3 is a simple deduction from Jensen's Theorem (see [4]).
Proof of Theorem 1. Let $\mathrm{Q}(\mathrm{z})=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z$.
Then $\mathrm{Q}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{Q}(0)=0, Q^{\prime}(0)=a_{1}$ and for $|z| \leq R$

$$
|Q(z)|=\left|a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z\right| \leq M
$$

Hence, by Lemma 2, for $|z| \leq R$,

$$
|Q(z)| \leq \frac{M|z|}{R^{2}} \cdot \frac{M|z|+\left|a_{1}\right| R^{2}}{M+\left|a_{1}\right||z|} .
$$

Therefore, for $|z| \leq R$,

$$
\begin{aligned}
|P(z)| & =\left|Q(z)+a_{0}\right| \\
& \geq\left|a_{0}\right|-|Q(z)| \\
& \geq\left|a_{0}\right|-\frac{M|z|}{R^{2}} \cdot \frac{M|z|+\left|a_{1}\right| R^{2}}{M+\left|a_{1}\right||z|} \\
& >0
\end{aligned}
$$

if

$$
\left|a_{0}\right| R^{2}\left(M+\left|a_{1}\right||z|\right)-M|z|\left(M|z|+\left|a_{1}\right| R^{2}\right)>0
$$

i.e. if

$$
M^{2}|z|^{2}+\left|a_{1}\right| R^{2}\left(M-\left|a_{0}\right|\right)|z|-\left|a_{0}\right| R^{2} M<0
$$

which is true if

Gulzar, MH
Manzoor, AW

$$
|z|<\frac{\left[R^{4}\left|a_{1}\right|^{2}\left(M-\left|a_{0}\right|\right)^{2}+4\left|a_{0}\right| R^{2} M^{3}\right]^{\frac{1}{2}}-\left|a_{1}\right| R^{2}\left(M-\left|a_{0}\right|\right)}{2 M^{2}}
$$

Thus $\mathrm{P}(\mathrm{z})$ does not vanish in

$$
|z|<\frac{\left[R^{4}\left|a_{1}\right|^{2}\left(M-\left|a_{0}\right|\right)^{2}+4\left|a_{0}\right| R^{2} M^{3}\right]^{\frac{1}{2}}-\left|a_{1}\right| R^{2}\left(M-\left|a_{0}\right|\right)}{2 M^{2}} .
$$

On the other hand, let

$$
\begin{aligned}
R(z) & =z^{n} P\left(\frac{1}{z}\right)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots \ldots+a_{n-1} z+a_{n} \\
& =H(z)+a_{n}
\end{aligned}
$$

where

$$
H(z)=a_{0} z^{n}+a_{1} z^{n-1}+\ldots \ldots+a_{n-1} z
$$

Then $\mathrm{H}(\mathrm{z})$ is analytic and $|H(z)| \leq M_{1}$ for $|z| \leq R, \mathrm{H}(0)=0, H^{\prime}(0)=a_{n-1}$. Hence, by Lemma 2, for $|z| \leq R$,

$$
|H(z)| \leq \frac{M_{1}|z|}{R^{2}} \cdot \frac{M_{1}|z|+\left|a_{n-1}\right| R^{2}}{M_{1}+\left|a_{n-1}\right||z|} .
$$

Therefore, for $|z| \leq R$,

$$
\begin{aligned}
|R(z)| & =\left|a_{n}+H(z)\right| \\
& \geq\left|a_{n}\right|-|H(z)| \\
& \geq\left|a_{n}\right|-\frac{M_{1}|z|}{R^{2}} \cdot \frac{M_{1}|z|+\left|a_{n-1}\right| R^{2}}{M_{1}+\left|a_{n-1}\right||z|} \\
& >0
\end{aligned}
$$

if

$$
\left|a_{n}\right| R^{2}\left(M_{1}+\left|a_{n-1}\right||z|\right)-M_{1}|z|\left(M_{1}|z|+\left|a_{n-1}\right| R^{2}\right)>0
$$

i.e. if

$$
M_{1}^{2}|z|^{2}+\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)|z|-\left|a_{n}\right| R^{2} M_{1}<0
$$

which is true if

$$
|z|<\frac{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}}
$$

Thus $\mathrm{P}(\mathrm{z})$ does not vanish in

$$
|z|<\frac{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}} .
$$

Hence all the zeros of $\mathrm{R}(\mathrm{z})$ lie in

$$
|z| \geq \frac{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}}
$$

Thus all the zeros of $z^{n} P\left(\frac{1}{z}\right)$ lie in

$$
|z| \geq \frac{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}}
$$

Hence all the zeros of $P\left(\frac{1}{z}\right)$ lie in

$$
|z| \geq \frac{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}{2 M_{1}^{2}}
$$

This implies that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2 M_{1}^{2}}{\left[R^{4}\left|a_{n-1}\right|^{2}\left(M_{1}-\left|a_{n}\right|\right)^{2}+4\left|a_{n}\right| R^{2} M_{1}^{3}\right]^{\frac{1}{2}}-\left|a_{n-1}\right| R^{2}\left(M_{1}-\left|a_{n}\right|\right)}
$$

Consequently, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the ring-shaped region $r_{1} \leq|z| \leq r_{2}$ and the proof of Theorem 1 is complete.

Proof of Theorem 2. To prove Theorem 2, we need to show only that the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}, 1<c<R$ does not exceed $\frac{1}{\log c} \log \left(1+\frac{M}{\left|a_{0}\right|}\right)$.
Since $\mathrm{P}(\mathrm{z})$ is analytic for $z \mid<R, \mathrm{P}(0)=a$ and for $|z| \leq R \mathrm{R}$ Since $\mathrm{P}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{P}(0)=a_{0}$ and for $|z| \leq R{ }^{\ell}{ }^{2} c$

$$
|P(z)|=\left|a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right|
$$

Gulzar, MH
Manzoor, AW

$$
\begin{aligned}
& \leq\left|a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z\right|+\left|a_{0}\right| \\
\leq & M+\left|a_{0}\right|
\end{aligned}
$$

it follows, by Lemma 3, that the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}, 1<c \leq R$ does not exceed $\frac{1}{\log c} \log \frac{M+\left|a_{0}\right|}{\left|a_{0}\right|}=\frac{1}{\log c} \log \left(1+\frac{M}{\left|a_{0}\right|}\right)$ and Theorem 2

ACKNOWLEDGEMENT

The authors are thankful to the referee for his value-able suggestions.

REFERENCES

[1] Govil N. K., Rahman Q. I and Schmeisser G.,On the derivative of a polynomial, Illinois Math. Jour. 23, 319-329(1979).
[2] Marden M,, Geometry of Polynomials, Mathematical Surveys Number 3, Amer. Math.. Soc. Providence, RI, (1966).
[3] Mohammad Q. G., On the Zeros of a Polynomial, Amer. Math. Monthly, 72, 631-633 (1966). http://dx.doi.org/10.2307/2313853
[4] Titchmarsh E.C., Theory of Functions, Oxford University Press, London, (1949).

