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Abstract the effect of non-uniform temperature gradient on the onset of 
convection driven by surface tension gradients in a relatively hotter or cooler 
layer of liquid is studied by means of linear stability analysis. the upper 
boundary is considered to be free and insulating where surface tension gradients 
arise on account of variation in temperature and the lower boundary is rigid. 
the single-term Galerkin technique is used to obtain the eigenvalue equation. 
Eigenvalues are obtained and presented for both thermally conducting and 
insulating cases of the lower boundary. this analysis predicts that in either case 
the critical eigenvalues for different non-uniform temperature gradients are 
greater in a relatively hotter layer of liquid than the cooler one under identical 
conditions otherwise. this qualitative effect is quite significant quantitatively 
as well.

Keywords: Convection; Conducting; Insulating; linear stability; Surface 
tension.

1. INTRoduCTIoN

the phenomenon of the problem of thermal convection in a thin horizontal liquid 
layer heated from below observed experimentally [3-4] was mathematically 
explained [16] in terms of buoyancy and [15] in terms of surface tension. In 
general, convection appears when a certain dimensionless parameter exceeds 
its critical value. this parameter is a Rayleigh number when the convection is 
induced by buoyancy effects due to variations in density and is a Marangoni 
number when surface tension variations induce the convection. In [12], Nield 
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accounted for both the surface tension and buoyancy effects and established 
that the two effects causing instability reinforce each other and that as the 
depth of the liquid layer decreases the surface tension effects become more 
dominant. thus, for thin layers used in the experimental work of Bénard the 
convective motion is due to mainly surface tension effects. In fact, as reported 
in [2] that if the fluid has a free surface then convection can still be induced by 
surface tension effects even if buoyancy forces are absent (zero gravity), and 
hence it is of importance to calculate the critical Marangoni number below 
which convection cannot occur. the copious literature on this phenomenon has 
been reviewed both experimentally and theoretically [5-6, 10, 14, 18].

Since the process of controlling convection in a fluid, has recently assumed 
importance in material processing in space because of its application extending 
from producing large crystals of uniform properties to manufacturing new 
materials with unique properties. the effect of non-uniform temperature 
gradient including various other effects such as rotation or/and magnetic field 
on buoyancy driven as well as surface tension driven convection is now well 
established [7, 11, 13, 17]. In [9], Gupta and Shandil have examined the surface 
tension driven problem in a relatively hotter or cooler layer of liquid, and 
established that the hotter layer with its heat diffusivity apparently increased 
as a consequent of actual decrease in its specific heat at constant volume, must 
exhibit convection at a higher temperature difference and hence at a greater 
Marangoni number than a cooler layer under  identical conditions otherwise. 
Nevertheless, investigation of the effect of non-uniform temperature gradient 
in a liquid layer which is relatively hotter or cooler has not been given attention 
in the literature despite its importance in understanding convective instability 
encountered in many scientific, engineering and technological fields.

In the present paper, therefore, we attempt to investigate the effect of non-
uniform temperature gradient on the onset of surface tension driven convection 
in a relatively hotter or cooler layer of liquid which is heated from below. 
the Galerkin method is useful for the present problem to find the eigenvalue 
equation with a minimum of mathematical calculations. this analysis predicts 
that the different non-uniform temperature gradients suppress the phenomenon 
more effectively in a relatively hotter layer of liquid than the cooler one under 
identical conditions otherwise.

2. MATHEMATICAL foRMuLATIoN of THE 
pRobLEM
We consider an infinite horizontal layer of homogeneous viscous fluid which 
is of uniform thickness d and heated from below.  the lower rigid boundary 
of the layer is kept at a constant temperature t0 and the upper free surface is 
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open to the atmosphere at temperature t1 subject to constant heat flux.  the 
lower boundary is at temperature ∆t higher than that of the upper boundary. 
We choose a Cartesian coordinate system of axes with the x and y axes in the 
plane of the lower surface of the layer and z axis along the vertically upward 
direction so that the fluid layer is confined between the planes z = 0 and z = d 
as shown in Figure 1.

the physical quantities that are assumed to vary within the fluid are the 
temperature and the surface tension only. the surface tension on the upper free 
surface of fluid is regarded as a function of temperature only which is given by 
the simple linear law

 τ τ σ= − −( )1 1T T  (1)

where the constant τ1  is the unperturbed value of τ at the unperturbed surface 
temperature T T= 1  and − = ∂ ∂( ) =

σ τ T
T T1

 represents the rate of change of 
surface tension with temperature T1, evaluated at temperature , and surface 
tension being a monotonically decreasing function of temperature, σ  is 
positive.  The governing equations for this configuration are well known 
and given in [6]. Following [1], the modified linearized and dimensionless 
equations governing the system in the present context can be written as

 D a D a p W2 2 2 2 0−( ) − −( ) =  (2)

 D a T pP T T f z Wr
2 2

2 0 2 01 1− − −( )



 = − −( ) ( )α α  (3)

where D d dz W z= / ; ( )  and T (z) represent the amplitude of the z-component of 
the velocity  and temperature distribution respectively; a the horizontal wave 

Figure 1: Schematic representation of a liquid layer heated from below.
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number, P
r
 is the prandtl number and p is the time growth rate of disturbances 

(which can be complex).   the coefficient α
2
 (due to variation in specific heat 

at constant volume on account of variation in the temperature) lies in the range 
from 0 to 10-4, and range of the dimensionless parameter a T2 0  covering the 
usual laboratory conditions is 0 12 0≤ <a T   for liquids with which we are 
mostly concerned. In this range, any given value of α

2
T

0
 ( ≠ 0) corresponds to 

the layer of liquid which is relatively hotter compared to that associated with its 
value less than (including a T2 0 0=  ) the given one. Further, f z( )  represents 
the dimensionless basic non-uniform temperature gradient ([13]) which must 

satisfy the condition that f z dz( ) =∫ 1
0

1
, the linear temperature profile f z( )  

= 1 is the basic uniform temperature gradient. the various non-uniform basic 
temperature profiles including the linear temperature profile considered in this 
paper are presented in Figure 2.

(a) Linear: f z( ) = 1 ,

(b) Piecewise linear (heated from below): f z( )= −ε 1  for 0 ≤ <z ε , and 
f z( ) = 0   for ε≤ ≤z 1 ,

figure 2:
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(c) Piecewise linear (cooled from above): f z( ) = 0  for 0 1≤ < −z ε    
and f z( )= −ε 1  for 1 1− ≤ ≤ε z ,

(d)  parabolic: f z z( ) = 2 ,

(e) Inverted parabolic: f z z( )= −( )2 1 ,
(f) Step function: f z z( )= −( )δ ε .

When the principle of exchange of stabilities is valid that is p = 0, 
equations (2)-(3) governing the neutral state are considerably simplified 
and reduce to the form

 
D a W2 2 2

0−( ) =
 

(4)

 
D a T T f z W2 2

2 01−( ) = − −( ) ( )α
 

(5)

The boundary conditions for thermally insulating free surface at z = 1 
with temperature dependent surface tension as given in [15] are

 W D W a M T DT1 0 1 1 0 1 02 2( )= ( )+ ( )= ( )=, ,  (6a, b, c)

where M Td=σ ρκν∆ /  represents the Marangoni number in which ρ   is the 
density,ν  the kinematic viscosity and κ   the thermal diffusivity of the liquid.
For the case of thermally conducting rigid bottom surface at z = 0, the 
boundary conditions are 

 W DW T0 0 0 0 0 0( )= ( )= ( )=, ,  (7a, b, c)

while for the case of thermally insulating rigid bottom surface at z = 0, 
these are given by

 W DW DT0 0 0 0 0 0( )= ( )= ( )=, ,  (8a, b, c)

Equations (4)-(5) together with boundary conditions (6a, b, c) and either (7a, 
b, c) or (8a, b, c) constitutes an eigenvalue problem of order six with M as an 
eigenvalue.

3. SoLuTIoN of THE pRobLEM
the single term Galerkin technique as described in [8] is convenient for solving 
the present problem. Accordingly, the unknown variables W and T are written as

 W AW T BT= =1 1and  (9)
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where A, B  are constants, and W
1
 and  T

1
 are the trial functions which are 

chosen suitably satisfying the boundary conditions (6a, b, c) and either (7a, b, 
c) or (8a, b, c).

Multiplying equation (4) by W and equation (5) by T, integrating the 
resulting equations with respect to z from  0 to 1 by using the boundary 
conditions (6a, b, c) and either (7a, b, c) or (8a, b, c), and substituting for 
W and T from (9), in either case, we obtain the following system of linear 
homogeneous equations:

 

A D W a DW a W

B a M DW T W T f z

2
1

2 2
1

2 4
1

2

2
1 1 1 1

2

1 1

( ) ( ) ( )







( ) ( ) ( )


+ +

+  
 = 0  (10)

 A T W T f z B DT a T1 02 0 1 1 1
2 2

1
2−( ) ( )



 − ( ) + ( )






 =α  (11)

the system of equations given by (10)-(11) will have a non-trivial solution if 
and only if

 M
D W a DW a W DT a T

T a DW T WT
= −

( ) + ( ) + ( ) ( ) + ( )

−( ) ( ) ( )

2 2 2 2 4 2 2 2 2

2 0
2

2

1 1 1α ff z( )
 (12)

where angular bracket -  denotes the integration with respect to z 
from 0 to 1 and suffixes have been dropped for simplicity while writing the 
eigenvalue equation (12).

4. RESuLTS ANd dISCuSSIoN

We now select the trial functions satisfying the appropriate boundary 
conditions for use in the single term Galerkin method. We consider the two 
cases depending upon whether the lower rigid boundary surface is conducting 
or it is insulating.

4.1 The conducting case

In this case, the velocity must satisfy the three boundary conditions (6a)-(7a, 
b) namely, W(1) = 0, W(0) = 0 and DW(0) = 0 and the temperature must satisfy 
the two boundary conditions (6c) and (7c) namely, DT(1) = 0 and T(0) = 0.  
the lowest order polynomials satisfying these requirements are
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 W z z T z
z

= −( ) = −








2 1 1
2

and  
(13)

and the residual from the remaining boundary condition (6b) namely, 
D W a M T2 21 1 0( )+ ( )= , is included in a residual from differential 
equations while performing integration by parts. Substitution of trial 
functions given by (13) into the equation (12), we get

 M
a a a

T a z z z z f z
=

+ +( ) +( )
−( ) − +( ){ }
4 420 28 5 2

1575 1 3 2

2 4 2

2 0
2 2 3 2α ( )

 (14)

For any given f z( )  and α2 0T , expression given by (14) gives the critical 
value of M as function of the wave number a. We consider the six 
different temperature profiles and denote the Marangoni numbers by Mi  
(i = 1 to 6) and their critical values respectively by Mci .
(a) the linear temperature profile

 
f z( )=1

 
(15)

represents the case of basic uniform temperature gradient. the Marangoni 
number M

1
 corresponding to this case obtained from equation (14) is given by

M
a a a

a T
1

2 4 2

2
2 0

4 420 28 5 2

105 1
=

+ +( ) +( )
−( )α

.

For given α2 0T  this has minimum value M
Tc1

2 0

66 85

1
=

−
.

α
  attained at a = 2 254.

. When α2 0 0T =  , we have Mc1 66 85= .  which is close to the known exact 

value 79.61 attained at a = 1.993  ([12], [15]).
(b) For the piecewise linear temperature profile due to sudden heating from 

below the temperature profile is

 f z for z
for z

( ) ,= ≤ <
≤ ≤






−ε ε
ε

1 0
0 1

 (16)

where ε  is the quasi-time dependent thermal depth ranging from 0 to 1. the 
corresponding Marangoni number M

2
  obtained from equation (14) is given by
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M
a a a

a T
2

2 4 2

2
2 0

3 2

8 420 28 5 2

105 1 15 18 15
=

+ +( ) +( )
−( ) − +( )α ε ε ε

.

For given α2 0T  and a = 2.254, α2 0 0T =  the minimum value  

M
Tc2

2 0

64 26

1
=

−
.

α
is attained at ε= 0 92. . When α2 0 0T = , we note that as  

ε increases from 0 to 1, the critical Marangoni number Mc2  decreases 
from ∞  to a minimum value 64.26 at ε= 0 92.  and then increases for 
increasing values of ε  from 0.92 to 1.

(c) For the piecewise linear temperature profile due to sudden cooling from 
top, the temperature gradient is of the form

 f z
for z

for z
( )

,

.
=

≤ < −
− ≤ ≤






−
0 0 1

1 11
ε

ε ε
 (17)

the corresponding Marangoni number M
3
 obtained from equation (14) is 

given by M
a a a

a T
3

2 4 2

2
2 0

4 3

8 420 28 5 2

105 1 5 18 20 15
=

+ +( ) +( )
−( ) − + − +( )α ε ε ε ε

.

For given α2 0T   and a = 2.254, α2 0 0T = , the minimum value 

M
Tc3

2 0

43 09

1
=

−( )
.

α
 is attained at ε= 0 47. . When α2 0 0T = , we note that 

as ε  increases from 0 to 1, Mc3  decreases from ∞   to a minimum of 
43.09 at ε= 0 47.  and then increases for increasing values of ε  from 
0.47 to 1.
(d) For the parabolic temperature profile in which the basic temperature 

gradient is zero at the lower boundary is of the form

 f z z( ) = 2  (18)

the corresponding Marangoni number M
4
 obtained from the equation (14) is 

given by M
a a a

a T
4

2 4 2

2
2 0

4 420 28 5 2

135 1
=

+ +( ) +( )
−( )α

.
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For given α2 0T , this has minimum value M
Tc4

2 0

52 00

1
=

−
.

α
  attained at a = 

2.254.
(e) For the inverted parabolic temperature profile generated in conducting 

fluid layer through the Joule heating with alternating current the basic 
temperature gradient is zero at the upper boundary is of the form

 f z z( )= −( )2 1  (19)

The corresponding Marangoni number M5 obtained from equation (14) 

is given by  M
a a a

a T
5

2 4 2

2
2 0

4 420 28 5 2

75 1
=

+ +( ) +( )
−( )α

.

For given α2 0T , this has minimum value M
Tc5

2 0

93 59

1
=

−
.

α
 attained at a = 

2.254.

(f) For the step function temperature profile in which the basic temperature 
drops suddenly at z = ε  but is otherwise uniform, the temperature gradient 
is of the form 

 f z z( )= −( )δ ε  (20)

The corresponding Marangoni number M6 obtained from equation (14) 

is given by M
a a a

a T
6

2 4 2

2
2 0

3

4 420 28 5 2

1575 1 1 2
=

+ +( ) +( )
−( ) −( ) −( )α ε ε ε

.

For given α2 0T  and a = 2.254, the minimum value M
Tc6

2 0

33 29

1
=

−( )
.

α
 attained 

at ε= 0 71. .  When α2 0 0T = , we note that as ε   increases from 0 to 1, Mc6  

α2 0T Mc1 Mc2 Mc3 Mc4 Mc5 Mc6

0.0 66.85 64.26 43.09 52.00 93.59 33.29

0.1 74.28 71.40 47.88 57.78 103.99 36.99

0.2 95.50 91.80 61.56 74.29 133.70 47.56

0.3 133.71 128.52 86.18 104.00 187.18 66.58

0.4 222.84 214.20 143.63 173.33 311.97 110.97

0.5 668.53 642.60 430.90 520.00 935.90 332.90

Table 1: Values of critical Marangoni numbers Mci  for various values of 
α2 0T .



Gupta, AK
Kalta, SK

130

decreases from ∞ to a minimum value 33.29 at ε= 0 71.  and then increases 
for increasing values of ε  from 0.71 to 1.

Values of Mci  (i = 1 to 6) computed for various values of α2 0T   are 
tabulated in table 1. the critical Marangoni number as a function of thermal 
depth ε  are plotted in Figure 3 for fixed values of α2 0T  (when a = 2.254). 
Figure 3 shows that as ε  increases from 0 to 1, the critical Marangoni number 
first decreases, attains a minimum and then increases.

4.2 The insulating case

In this case, we select the trial functions satisfying the boundary conditions 
namely, (6a, c) and (8a, b, c) as

 W z z= −( )2 1  (21)

and the residual from the remaining boundary condition (6b) namely, 
D W a MT2 21 1 0( )+ ( )= , is included in a residual from differential equations 
while performing integration by parts. Substitution of trial functions given by 
(21) into the equation (12), we get

figure 3: Critical Marangoni number as a function of thermal depth ε  when 
α2 0T  = 0, 3.
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 M
a a

T z z f z
=

+ +








−( )< −( ) ( )>

4 1
1

15
1

420

1

2 4

2 0
2 3α

 (22)

Since for the fluid layer heated from below the non-uniform temperature 
gradient f z( )≥ 0  for all values of z from 0 to 1. thus, the expression (22) for 
M shows that its minimum exists for a = 0 and given by 

 M
T z z f z

c =
−( )< −( ) ( )>

4

1 2 0
2 3α

 (23)

(a) For the linear temperature profile f z( )=1 , the critical Marangoni number 
Mc1  corresponding to this case, obtained from equation (23) is given by 

M
Tc1

2 0

48

1
=

−( )α
. When α2 0 0T =  we have Mc1 48=  which is exactly 

the same value as that given in [13, 15].
(b) For the piecewise linear temperature profile due to sudden heating from 

below given by (16). The corresponding critical Marangoni number Mc2   

obtained from equation (23) is given by M
T

c2
2 0

2 3

48

1 4 3
=

−( ) −( )α ε ε
. For 

given α2 0T  the minimum value  M
Tc2

2 0

45 56

1
=

−( )
.

α
is attained at ε= 0 89. . 

When α2 0 0T = , we have Mc2 45 56= .  which is exactly the same value 

as that obtained in [13].
(c) For the piecewise linear temperature Profile due to sudden cooling from top 

given by (17), the corresponding critical Marangoni number Mc3 obtained 

from equation (23) is given by M
T

c3
2 0

3 2

48

1 3 8 6
=

−( ) − +( )α ε ε ε
. For 

given α2 0T  the minimum value M
Tc3

2 0

34 79

1
=

−
.

α
  is attained at ε= 0 54.  . 

When α2 0 0T = , we have Mc3 34 79= .  which is exactly the same value 
as that obtained in [13].

(d) For the parabolic temperature profile given by (18), the corresponding 
critical Marangoni number Mc4 obtained from equation (23) is given by
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M
Tc4

2 0

40

1
=

−( )α
. When α2 0 0T = , we have Mc4 = 40  which is exactly 

the same value as that obtained in [13].

(e) For the inverted parabolic temperature profile given by (19), the 
corresponding critical Marangoni number Mc5 obtained from equation (23) 

is given by M
Tc5

2 0

60

1
=

−( )α
.  When α2 0 0T = , we have Mc5 60=  which 

is exactly the same value as that obtained in [13].
(f) For the step function temperature profile given by (20), the corresponding 

critical Marangoni number Mc6 obtained from equation (23) is given 

by M
T

c6
2 0

2 3

4

1
=

−( ) −( )α ε ε
. For given α2 0T  the minimum value 

M
Tc6

2 0

27

1
=

−α
 is attained at ε= 0 67. . When α2 0 0T =   we have 

Mc6 27=   which is exactly the same value as that obtained in [13].

Table 2: Values of critical Marangoni numbers Mci  for various values of α2 0T .

α2 0T Mc1 Mc2 Mc3 Mc4 Mc5 Mc6

0.0 48.00 45.56 34.79 40.00 60.00 27.00

0.1 53.33 50.63 38.66 44.44 66.67 30.00

0.2 60.00 56.95 43.49 50.00 75.00 33.75

0.3 68.57 65.09 49.70 57.14 85.71 38.57

0.4 80.00 75.94 57.99 66.67 100.00 45.00

0.5 96.00 91.13 69.58 80.00 120.00 54.00

In this case, values of Mci  (i = 1 to 6) computed for various values of α2 0T   are 
tabulated in Table 2. The critical Marangoni number as a function of thermal 
depth ε  are plotted in Figure 4 for fixed values of α2 0T  (when a = 0). Figure 
4 shows that as ε  increases from 0 to 1, the critical Marangoni number first 
decreases, attains a minimum and then increases.
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CoNCLuSIoN

For any given f(z) the critical Marangoni number increase with increasing value 
of α2 0T , showing that the relatively hotter layer of liquid is more stable than 
the cooler one irrespective of whether the lower rigid boundary is thermally 
conducting or insulating. However, the effect of inverted parabolic profile in 
a relatively hotter layer of liquid makes the system more stable than any other 
temperature profile.
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