DOI: 10.15415/mjis.2016.51006

Some Aspects on the Utility of Distance Measures
in Comparing Two MROC Curves

SAMEERA G AND VISHNU VARDHAN R

Department of Statistics, Ramanujam School of Mathematical Sciences, Pondicherry
University, Puducherry, India

Email: rvverr @gmail.com

Received: May 05,2016l Revised: May 23, 2016l Accepted: August 03,2016

Published online: September 05, 2016
The Author(s) 2016. This article is published with open access at www chitkara.edu.in/publications

Abstract Receiver Operating Characteristic (ROC) curve is a widely used and
accepted tool to assess the performance of a classifier or procedure. Apart from
this, comparing the procedures or ROC curves is also of interest. A multivariate
extension of ROC (MROC) curve that considers a linear combination of
several markers for classification was proposed by Sameera, Vishnu Vardhan
and Sarma [13]. In the present paper, some inferential procedures are given to
compare two MROC curves by means of distance measures based on scores
of MROC curve and summary measures such as mean vectors and dispersion
matrices. Real and Simulated data sets are used to demonstrate the above
proposed inferential aspects.

Keywords: Bhattacharya Distance, Mahalanobis Distance, Mean vectors and
Dispersion matrices and Multivariate Receiver Operating Characteristic curve.

1. INTRODUCTION

Receiver Operating Characteristic (ROC) curve is a classification tool which
is widely used in the field of diagnostic medicine in present day. This tool
helps in classifying the individuals/subjects into one of the two groups, healthy
and diseased, by identifying a threshold value, which provides maximum
accuracy. This model is univariate in nature, i.e., it considers a single marker
for classification. However, in real situations it might not always be possible
to judge the status of an individual basing on one marker alone. Hence, there
is a need to have an ROC model that accommodates multiple markers at
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with unequal covariance matrices. Further, Liu, Schisterman and Zhu [1] and
Gao, Xiong, Yan and Zhang [3] provided a modified version of the above
model which helps in obtaining better accuracy and maximizes sensitivity.
Recently, a Multivariate Receiver Operating Characteristic (MROC) curve
was proposed by Sameera, Vishnu Vardhan and Sarma [13] by considering
minimax procedure to obtain the linear combination of markers and provides
an optimal cutpoint. Further, it is shown that the MROC model and the best
linear combination provided by Sameera, Vishnu Vardhan and Sarma [13]
provides mathematical ease and better results than the previous models.

Comparing models has become a necessity and gained its prevalence
over the years as it helps in identifying a better one among the existing. A
brief review about the existing comparison procedures on ROC curves is
discussed. Comparison of curves can be done by comparing their accuracy
measure Area Under the Curve (AUC) or their intrinsic measures Sensitivity
(S,) and Specificity (SP). The seminal paper by Greenhouse and Mantel [5]
focuses on comparison of curves by comparing their sensitivities at a fixed
level of specificity. Gourevitch and Galanter [4] used detectability index
to propose a large sample test for testing whether two observed data points
belong to the same d’ function or not, further extended to k observed data
points by Marascuilo [10]. Metz and Kronman [12] proposed a x> statistic
to test the equality of curves by testing the parameters of the curve. The
comparison of two ROC curves was also done by comparing their area’s
[6, 7]. Further, McClish [11] proposed F test and studentized range test
to compare more than two ROC curves using their AUC’s. Vardhan,
Sameera, Chandrasekharan and Thulasi [14] proposed testing procedures
for comparing MROC curves using AUC and comparing the curves at a
particular point.

So far in the literature, the usual method of comparing two curves is
done by using the summary measures such as AUC, pAUC, etcetera. In
classification, distance measures also play an important role in identifying
the similarity between two distributions/ populations. In terms of ROC
curve, the distance measure helps in identifying the distance between
healthy and diseased populations; larger the distance better the classification.
Henceforth, the present paper addresses the utility of distance measures to
compare two curves. In the field of classification and separation techniques,
Mahalanobis distance is greatly used for explaining the magnitude between
two populations using group centroids, depicting the extent of correct
classification. The distance measures used in this paper are Mahalanobis
and Bhattacharya distances. Conventionally, Mahalanobis distance is
usually applied when the populations have equal variances/covariances
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and Bhattacharya Distance will be taken into account when the variances/
covariances are unequal. The motivation behind considering these two
measures is to address the practical situation where these measures are to
be used properly, since the variances/ covariances of the populations may
not always have equal structures. In other words, the need for two measures
is that, when the property of homogeneity of covariance matrices is ignored,
the distance value is either overestimated or underestimated thus hiding the
actual information. These distances are computed using the scores obtained
through the MROC curve and also the mean vectors and covariance matrices
of two populations. The proposed procedures are explained with the help
of two real datasets (Indian Liver Patients (ILP) dataset and Salmon fish
dataset) and simulation studies.

2. PROPOSED METHODOLOGY

Let us suppose X and Y are two multivariate normal random vectors of
healthy(H) and diseased(D) populations with mean vectors g, u, and
covariance matrices 2, and X respectively i.e., X ~ MVN(u,, Z) and Y ~
MVN(u,, ). Let n, and n, be the sample sizes of X and Y respectively. The
expression for MROC curve given by Sameera, Vishnu Vardhan and Sarma
[13]is

b'(pp — iy ) — A0S, 627 (1—x)

= 1
v(x) N (1)

where x is the false positive rate and b is the vector of linear combination of
the markers and is given as b= [tED +(1 —t)ZHrl (pp — ) :0<t<1.
The scores for each subject can be obtained as U,, = b' X and for healthy and
diseased populations respectively. The obtained scores can then be compared
to optimal cut point to identify the status of the subject.

The accuracy measure, Area under the MROC (AUC) curve explains the
extent of correct classification and is given as

b'(:u’D _IL(/H) (2)

AUC =3 1
B2, +2, 8]
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Vishnu Vardhan, R probabilities that diseased and healthy individuals respectively are identified
accurately are given as

5 —a| XHo—C 3)
" (bs,p)
D
c—b'u
S, = ——— “4)
" (bs,b)”

The main objective of the paper is to provide comparison procedures
based on the distance measures namely Mahalanobis and Bhattacharya
distances. It is assumed that the scores of MROC curve follow normal
distribution; hence, the distance measures are redefined using scores under
normal distribution. The detailed methodology of comparison procedures
that are proposed using these distance measures are given in subsequent
subsections.

2.1 Comparison based on Mahalanobis Distance using Scores

The test scores for each subject is obtained using the linear combination of the
MROC model. Further, it is assumed that the obtained scores follow normal
distribution. If the test score of healthy and diseased populations tend to have
equal variances, Mahalanobis distance can be used. The Mahalanobis distance
based on scores is redefined under the setup of MROC model ‘i’ and is given
by

Gy

——;i=1,2 (%)
,Sli(l)

_ 1 X _ ny
where U, :_ZUD .U, ZLZUH and

np Jj=1 ny j=1

() _
D, =

(n, —1)var(U,)+(n, —I)Var(UH)‘

S; =
v ny,+n,; —2

64



Here, D and D® are the Mahalanobis distances of two MROC curves under
comparison. The null and alternative hypothesis to compare the distance
measures is defined as

.M _ n®2) .M (2)
H,:D =D? ~H, : D" = Df

The test statistic used for testing the above hypothesis is

. D — D

- Var(Dl(,l))%— Var(Dl<J2)) ~N@O.I) (6)

The curve with greater distance measure is said to be a better curve if the Z
value obtained in equation (6) is significant.

2.2 Comparison based on Bhattacharya Distance using scores

The practical use of this procedure will come into existence when the scores
of both populations have unequal variances. In such cases, Bhattacharya
distance gives accurate information as it considers variances of both of
populations instead of pooling them. Bhattacharya distance between the
scores of healthy and diseased populations of an MROC curve ‘i’ can be
obtained as

Dgl’]:lln 1 Var(Ug))+Var<Ug))
4 |4 Var(U,S)) Var<U,(3’))

+2

y_vooh
4 Var(Ug))—kvar(U}}))

If Dgz)/ and DZ(,ZJ are Bhattacharya distances of two MROC curves to be
compared, then the null and alternative hypothesis for testing two curves using
their Bhattacharya distances is defined as

. n®2) .M (2)
Ho 'DBU _DBU NHl ’DBU iDBU
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The test statistic used for testing the above null hypothesis against alternative
hypothesis is

oo
var (Df;l} ) + var (DE,ZU) )

Z ~ N(0,1) )

The variances in equation (8) are obtained using bootstrapping. A better curve
is identified, if the Z value is greater than critical value otherwise the curves
are said to have similar discriminating ability.

2.3 Comparison based on Mahalanobis Distance using Mean Vectors and
Covariance Matrices

The conventional way of obtaining Mahalanobis distance is by using the mean
vectors and pooled covariance matrix because the populations are assumed
to have equal covariances. Mahalanobis distance between two populations,
healthy and diseased for i'" MROC curve is given by

DY — \/()7(") _xW )I g ()7(") _X‘@) S i=1,2 )

Here, X , Y ® and S are mean vectors and pooled covariance matrix of
i" MROC curve and D", D® are the Mahalanobis distances of two MROC
curves. Then, the null and alternative hypothesis to compare the distance
measures is defined as

O n®@ N (2)
H,:DW =D"~H, :D"V =D
The test statistic used for testing the above hypothesis is

DY _ p®

7 -
JVar(D®)+Var(D®)

~N(0,1) (10)

If the obtained Z value is greater than the critical value, the curves under
comparison are said to differ from each other. The curve with greater distance
has a better discriminating ability.
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2.4 Comparison based on Bhattacharya Distance using Mean Vectors and
Covariance Matrices

When the populations under study have unequal covariance matrices, it is
better to use Bhattacharya distance instead of Mahalanobis distance to avoid
loss of information. Bhattacharya distance between two multivariate normal
populations; healthy and diseased is given by

-1

o Low oV (ZH4SY) 0
D = () = ) | =P = () — )
(), sl
det| =0t 2 (11)
—I—lln ; i=1,2

2| |detz) detx!)

Here, Dl(;) and Déz) are Bhattacharya distance of MROC curves to be compared.
The null and alternative hypothesis for testing two curves using their Bhattacharya
distances is defined as

.M _ 1@ PG @)
H,:DY =D?~H, :DV = DS

The test statistic used for testing the above null hypothesis against alternative
hypothesis is

Dg) . Dz(;2)
- \/Var (Dg) ) +Var (D;z))

N(0,1) (12)

The curve with larger distance is said to be a better curve if the Z value is
significant.

3. RESULTS AND DISCUSSIONS

The above inferential procedures are demonstrated with the help of real and
simulated datasets. The simulated datasets are considered in such a way that
they explain the various cases of MROC curves that are observed in real
situations. These simulations are conducted at different sample sizes to observe
the behavior of proposed models at small as well as large samples.

67

Some Aspects

on the Utility of
Distance Measures
in Comparing Two
MROC Curves




Sameera, G 3.1 Real data
Vishnu Vardhan, R

3.1.1 Indian Liver Patient Dataset

Indian Liver Patient (ILP) dataset [2] consists of ten variables; age, gender,
Total Bilirubin (TB), Direct Bilirubin (DB), Total Proteins (TP), Albumin, A/G
ratio, SGPT, SGOT and Alkphos. It has 441(75.65%) males and 142(24.35%)
females. The comparison is done between males and females to check if
parameters involved in identification of liver diseases vary based on gender.
The MROC analysis is performed on both males and females using R and the
results obtained are tabulated.

Table 1: MROC measures of ILP dataset.

Gender AUC Sensitivity 1-Specificity
Males 0.7541 0.6959 0.3041
Females 0.7232 0.6781 0.3219

ScoreMales = 0.0242*Age + 0.0063*TB + 0.2011*DB + 0.0012*Alkphos + 0.0029*SGPT
—0.0004*SGOT + 0.4145*TP — 0.8069*ALB + 0.2592*A/G

ScoreFemales = 0.0009*Age — 0.5375*TB + 1.1341*DB + 0.0012*Alkphos - 0.0056*SGPT
+0.0075*SGOT + 1.1394*TP — 1.8168*ALB + 1.5752*A/G

MROC curves based on gender
forIndian Liver Diseases
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Figure 1: Indian Liver Patient Dataset.
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Table 2: Estimates and Z values of Distance Measures on ILP Dataset.

Distance Measures Males Females Z value

Mabhalanobis Distance (D) 0.9027 0.8702 0.2162
Bhattacharya Distance (D, ) 0.2616 0.2918 0.2783
Based on Mean vectors Mahalanobis Distance (D) 09146  0.8889 0.1935
& Covariance Matrices  Bhattacharya Distance (D,) ~ 3.7070 34080  0.4641

Based on Scores

From table 1, the AUC’s of males and females are almost equal indicating
that their MROC curves have similar discriminating ability. MROC curves
are drawn and it can be seen that they overlap each other. Further, the scores
of males and females are computed using the linear combinations reported in
Table 1.

The above figure depicts the MROC curves for Males and Females of ILP
dataset

In order to test the homogeneity of covariance matrices of two populations
and variances obtained from the scores, Box’s M test and Levene’s F test are
used. The Box’s M test value for females is 606.946 (0.000*) and for males
is 1805.483 (0.000*) indicating that the covariance matrices are unequal.
Further, the homogeneity of variances of obtained scores is tested for females
and males, whose F values along with significance are 17.434 (0.000*) and
63.167 (0.000*) respectively. This leads to a conclusion that Bhattacharya
distance is to be used for comparing the curves. The comparison between
males and females is done using the distance measures to verify whether there
is any difference in the identification of Liver diseases between them, this is
achieved by comparing MROC curves The distances obtained using scores as
well as mean vectors and covariance matrices along with their Z values are
portrayed in Table 2.

In the case of distance measures using scores, the Mahalanobis measure
overestimates the actual distance between the populations than Bhattacharya
measure, due to the violation of homogeneity of variances. Further, when the
homogeneity of covariance matrices is violated, the actual distance between
populations is underestimated when Mahalanobis distance is used thus concluding
that Bhattacharya distance should be used to avoid loss of information. The
inference procedures indicate that there is no difference between the males and
females with respect to identification of liver diseases. The Z values obtained for
all the procedures are less than the standard value at 5% level of significance.
This indicates that even though males are more prone to liver diseases when
compared to females, the parameters used to identify the disease do not differ.
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Salmon AUC Sensitivity 1-Specificity
Canadian 0.5753 0.5534 0.4465
Alaskan 0.6402 0.6002 0.3997
ScoreCanadian = - 0.0121*Freshwater - 0.00398*Marine
ScoreAlaskan = 0.0253*Freshwater + 0.0130*Marine

AREOC Curves for Salmon data
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Figure 2: Salmon data.

3.1.2. Salmon Fish data

Salmon Fish data [9] contains data samples of 50 Canadian and Alaskan salmon fishes.
This dataset consists of two variables, namely diameter of rings for the first year of
growth in freshwater and marine water. Linear combinations are obtained for both
Canadian and Alaskan salmon fishes in order to identify the gender of the fish using
the diameter of rings observed in fresh and marine water.

Using the given information, gender identification in Canadian salmons can
be done to the extent of 57.53% accurately, where as in Alaskan salmons it
is observed to have an accuracy of 64.02%. This indicates the fact that good
extent of classification is seen in Alaskan salmons than Canadian salmons. To
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Table 4: Estimates and Z values of Distance Measures on ILP Dataset.

Distance Measures Canada Alaska Z value

Mahalanobis Distance (D) 0.4292 0.6001 0.4964
Based on Scores

Bhattacharya Distance (D 0.0482 0.0646 0.2261

BU)
Based on Mean vectors Mabhalanobis Distance (D) 0.4868 0.5805 0.2664

& Covariance Matrices g yacharya Distance (D,) 00809 0.1083 03506

depict the same, MROC curves (Figure 2) are drawn for both types of Salmons
and it is observed that the MROC curve for Alaskan salmon supersedes the
curve of Canadian salmon indicating that the gender of the salmon fishes can
be discriminated better using variation in diameter of rings in Alaskan salmons
than Canadian salmons.

The above figure depicts the MROC curves for Alaskan and Canadian
Salmons

Further, comparisons are obtained for both Canadian and Alaskan salmon
fishes to see whether the extent of correct identification of gender is better in
one type of fishes when compared to the other. This is addressed using distance
measures. The homogeneity of covariance matrices is tested using Box’s M
test and the values for Alaskan and Canadian salmons are 3.805 (0.304"%) and
1.040 (0.803"%) respectively. The scores obtained through linear combinations
are tested for homogeneity of variances using Levene’s F Statistic and the
results for Alaskan and Canadian salmons are 0.808 (0.373™) and 0.590
(0.446™) respectively. These results indicate that the distance measure to be
used for comparison is the Mahalanobis distance, since the variances and
covariance matrices are observed to be homogneous. The distance measures
along with Z values are computed and placed in table 4.

The distance measure values are obtained based on scores as well as
mean vectors and covariance matrices. From the results, it is noticed that the
distances are underestimated when Bhattacharya measure is used. This means
that the exact distance is not computed using Bhattacharya distance when the
variances/ covariances are equal. Thus, it is shown that, when the variance/
covariance matrices are homogenous, Mahalanobis measure is to be used to
observe the actual distance rather than Bhattacharya measure. Further,Z values
observed in the table are not significant for all the four testing procedures
indicating that the identification of gender of Canadian salmons is equivalent
to that of Alaskan salmons.
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3.2 Simulation Study

In this section, the sample size effect on the above proposed methods is
demonstrated with the help of simulation studies. Four sets of multivariate
normal random numbers are generated with mean vectors and covariance
matrices given in table 5. Data is generated at various samples sizes 25, 50,
100, 150, 200 and 300.

The combinations in table 3 are considered in such a way that they represent
typical forms of MROC curve. Simulation 1 represents a best curve, simulation
3 represents a better curve and simulations 2 and 4 represent moderate
curves. Three combinations of these curves are considered to demonstrate

Table 6: Measures of MROC curve for four sets of simulations at six different
sample sizes.

Sample Size

Simulation (nD =)nH AUC Sn 1-Sp Linear combination
=n
25 0.9987 09832 00168 -19.57*X14+6.20%X2+15.05*% X3
50 0.9983 09809 0.0191 -8.04*X1+5.37* X2+10.04* X3
100 09975 09764 0.0236 -5.89%X1+5.82* X2+8.29* X3
: 150 0.9951 09662 0.0338 -6.59*X1+5.14* X2+7.71* X3
200 0.9957 09685 0.0315 -7.34*X1+5.40* X2+7.99* X3
300 09954 09674 00326 -7.25%X1+547* X2+7.88* X3
25 0.7474 0.6824 03177  8.29*X1+1.25% X2-1.20* X3
50 0.7250 0.6638 0.3362  -0.29%*X1+0.94* X2+1.40* X3
100 0.7066 0.6497 0.3503  -1.84*X1+1.09* X2+1.61* X3
’ 150 0.7096 0.6519 0.3480 -0.97*X1+1.12* X2+1.41* X3
200 0.7069 0.6499 0.3501  -1.61*X1+1.12*% X2+1.66* X3
300 0.6982 0.6433 0.3567  -1.14*X1+1.01* X2+1.49* X3
25 09345 0.8593 0.1407  17.00%X1+7.39* X2-1.06% X3
50 09217 0.8421 0.1578  13.78*X1+6.84* X2-1.24* X3
100 09377 08615 0.1385  10.77*X1+8.29* X2-1.24* X3
: 150 09288 0.8509 0.1491  13.35%X1+7.49* X2-1.17* X3
200 09292 0.8508 0.1491  14.13*X1+7.36* X2-1.21* X3
300 09269 0.8479 0.1521  14.50*X1+7.36* X2-1.14* X3
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Sameera, G 25 07485 06925 03075  -141%X1-0.23* X2-0.73* X3
Vishnu Vardhan, R 50 06125 05801 04199  -2.18%X1-1.32% X2+0.03* X3
100 06633 06177 03822  -0.74%X1-1.25% X2-0.23* X3
! 150 06415 06029 03971  0.67%X1-0.52% X2-0.32% X3
200 06529 06114 03886  -0.38%X1-0.64* X2-0.27* X3
300 06617 06181 03819  -1.30%X1-0.62* X2-0.25* X3

(a) The MROC curves (b) The MROC curves (c) The MROC curves in

in the graph depict the the graph depict curves
curves where one is that cross each other
superior to the other

in the graph indicate
the case of almost
parallel curves
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Figure 3: MROC curves of the considered combinations.

the comparison of MROC curves using proposed methods i.e, almost parallel
curves (Simulation 1 and 3), One superior to the other (Simulation 2 and 3),
and cross over curves (Simulation 2 and 4). The comparisons are made using
all the proposed methods and the results are explained. The MROC model is
applied to all the simulations at various sample sizes {25, 50, 100, 150, 200,
300} to obtain the linear combination required to obtain scores and the results
are given in Table 6.

Case 1: Almost Parallel MROC curves

The MROC curves considered for comparison in this case are Simulations
1 and 3 (Fig 3a). The accuracies of Simulations 1 and 3 over all considered
sample sizes is observed to be around 99% and 93% respectively, indicating
that simulation 1 has a better capacity in discriminating the subjects into one of
the two classes. This is further proved using the proposed testing procedures.
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A case of MROC curves where it is difficult to identify a better curve is
when they cross each other. Simulations 2 and 4 are the sets that relate to
the phenomenon where the curves cross each other (Fig 3c). The accuracies
observed for simulation 2 and simulation 4 after performing MROC analysis
are around 70% and 66% respectively at all sample sizes.

The distances observed in simulation 2 and simulation 4 using scores (Table 9) of
the MROC model are approximately equal portraying the fact that the overlapping area
in both simulations is same. The Z values obtained through inference procedures are
smaller than the table value at 5% level. This shows that simulation 2 and simulation
4 have similar discriminating capacity.

The distances observed in simulations 2 and 4 using mean vectors and
covariance matrices (Table 9) are approximately equal thus concluding that
the MROC curves do not differ from each other. The Z values obtained at all
sample sizes are smaller than the standard value at 5% level showing that
sample size does not affect the discriminating ability of the curves.

DISCUSSIONS

The main objective of the paper is to compare two MROC curves using distance
measures based on the scores obtained through linear combination and mean
vectors and covariance matrices. The importance of distance measures in
classification led to the proposal of comparison procedures using two distance
measures. Mahalanobis distance considers equal variances/covariances and is
calculated for both the scores of the MROC curve as well as mean vectors
and covariance matrices of the data. Another distance measure namely
Bhattacharya distance that considers unequal variances/covariances between
the populations is also used, since there are no restrictions on covariance
matrices of healthy and diseased populations in MROC model. The main
reason for considering two distance measures is that the distance between two
populations is either overestimated or underestimated when the assumption of
homogeneity of variances/covariance matrices is ignored.

The proposed methods are explained by using real datasets and simulation
studies. Further, the effect of sample size on these methods is studied by applying
the procedures at various sample sizes. The results indicate that all the proposed
methods provide similar results and can be applied based on the nature of variances/
covariance matrices. Further, it is noticed that the sample size does not affect the
comparison procedures thus making them a valuable tool for comparisons. In
ILP data, the MROC curves obtained for males and females do not differ from
each other indicating a similar extent of correct classification for both genders.
In Salmon data, the MROC curves obtained for Canadian and Alaskan salmons
are proved to be indifferent when the gender of the fish is to be identified. The

78



results further depict that the distances are underestimated when the property of
homogeneity of variances/covariance matrices is neglected. Further, illustrations
regarding three different scenarios (almost parallel curves, one superior to the
other and curves that cross each other) are given with the support of simulation
studies. This attempt is to enhance the knowledge of the researcher in making
the use of distance measures in comparing curves rather than using the intrinsic
and summary measures of ROC. The above three scenarios are handled using
the following combinations. The difference between simulations 1 and 3 and 2
and 3 is observed at all sample sizes using all the proposed procedures to mimic
the real situation where the curves (tests) are almost parallel and one superior
to other. The MROC curves of simulations 2 and 4 are compared and proved to
be indifferent indicating a similar level of classification in both the curves thus
giving an insight about the case of curves that cross each other. The present paper
reveals an interesting fact pertaining to the case of curves that cross each other.
Along with the summary measures and intrinsic measures, distance measures
have also not extracted the true difference between this type of curves. Hence,
this case requires a special attention to distinguish the curves and to determine
which test is to be used for the classification. However, it is shown that distance
measures can also be used to explain the true difference between the two MROC
curves apart from the conventional measures.
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