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Abstract Receiver Operating Characteristic (ROC) curve is a widely used and 
accepted tool to assess the performance of a classifier or procedure. Apart from 
this, comparing the procedures or ROC curves is also of interest. A multivariate 
extension of ROC (MROC) curve that considers a linear combination of 
several markers for classification was proposed by Sameera, Vishnu Vardhan 
and Sarma [13]. In the present paper, some inferential procedures are given to 
compare two MROC curves by means of distance measures based on scores 
of MROC curve and summary measures such as mean vectors and dispersion 
matrices. Real and Simulated data sets are used to demonstrate the above 
proposed inferential aspects.

Keywords: Bhattacharya Distance, Mahalanobis Distance, Mean vectors and 
Dispersion matrices and Multivariate Receiver Operating Characteristic curve.

1. INTRODUCTION

Receiver Operating Characteristic (ROC) curve is a classification tool which 
is widely used in the field of diagnostic medicine in present day. This tool 
helps in classifying the individuals/subjects into one of the two groups, healthy 
and diseased, by identifying a threshold value, which provides maximum 
accuracy. This model is univariate in nature, i.e., it considers a single marker 
for classification. However, in real situations it might not always be possible 
to judge the status of an individual basing on one marker alone. Hence, there 
is a need to have an ROC model that accommodates multiple markers at 
hand. A multivariate extension of this model was developed by Su and Liu 
[8] where data is assumed to follow multivariate normal distribution and two 
cases were considered, i.e., one with equal covariance matrices and the other 
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with unequal covariance matrices. Further, Liu, Schisterman and Zhu [1] and 
Gao, Xiong, Yan and Zhang [3] provided a modified version of the above 
model which helps in obtaining better accuracy and maximizes sensitivity. 
Recently, a Multivariate Receiver Operating Characteristic (MROC) curve 
was proposed by Sameera, Vishnu Vardhan and Sarma [13] by considering 
minimax procedure to obtain the linear combination of markers and provides 
an optimal cutpoint. Further, it is shown that the MROC model and the best 
linear combination provided by Sameera, Vishnu Vardhan and Sarma [13] 
provides mathematical ease and better results than the previous models.

Comparing models has become a necessity and gained its prevalence 
over the years as it helps in identifying a better one among the existing. A 
brief review about the existing comparison procedures on ROC curves is 
discussed. Comparison of curves can be done by comparing their accuracy 
measure Area Under the Curve (AUC) or their intrinsic measures Sensitivity 
(Sn) and Specificity (Sp). The seminal paper by Greenhouse and Mantel [5] 
focuses on comparison of curves by comparing their sensitivities at a fixed 
level of specificity. Gourevitch and Galanter [4] used detectability index 
to propose a large sample test for testing whether two observed data points 
belong to the same d’ function or not, further extended to k observed data 
points by Marascuilo [10]. Metz and Kronman [12] proposed a χ2 statistic 
to test the equality of curves by testing the parameters of the curve. The 
comparison of two ROC curves was also done by comparing their area’s 
[6, 7]. Further, McClish [11] proposed F test and studentized range test 
to compare more than two ROC curves using their AUC’s. Vardhan, 
Sameera, Chandrasekharan and Thulasi [14] proposed testing procedures 
for comparing MROC curves using AUC and comparing the curves at a 
particular point.

So far in the literature, the usual method of comparing two curves is 
done by using the summary measures such as AUC, pAUC, etcetera. In 
classification, distance measures also play an important role in identifying 
the similarity between two distributions/ populations. In terms of ROC 
curve, the distance measure helps in identifying the distance between 
healthy and diseased populations; larger the distance better the classification. 
Henceforth, the present paper addresses the utility of distance measures to 
compare two curves. In the field of classification and separation techniques, 
Mahalanobis distance is greatly used for explaining the magnitude between 
two populations using group centroids, depicting the extent of correct 
classification. The distance measures used in this paper are Mahalanobis 
and Bhattacharya distances. Conventionally, Mahalanobis distance is 
usually applied when the populations have equal variances/covariances 
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and Bhattacharya Distance will be taken into account when the variances/
covariances are unequal. The motivation behind considering these two 
measures is to address the practical situation where these measures are to 
be used properly, since the variances/ covariances of the populations may 
not always have equal structures. In other words, the need for two measures 
is that, when the property of homogeneity of covariance matrices is ignored, 
the distance value is either overestimated or underestimated thus hiding the 
actual information. These distances are computed using the scores obtained 
through the MROC curve and also the mean vectors and covariance matrices 
of two populations. The proposed procedures are explained with the help 
of two real datasets (Indian Liver Patients (ILP) dataset and Salmon fish 
dataset) and simulation studies.

2. PROPOSED METHODOLOGY

Let us suppose X and Y are two multivariate normal random vectors of 
healthy(H) and diseased(D) populations with mean vectors µH, µD and 
covariance matrices ΣH and ΣD respectively i.e., X ∼ MVN(µH, ΣH) and Y ∼ 
MVN(µD, ΣD). Let nH and nD be the sample sizes of X and Y respectively. The 
expression for MROC curve given by Sameera, Vishnu Vardhan and Sarma 
[13] is
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The scores for each subject can be obtained as U b XH = '  and for healthy and 
diseased populations respectively. The obtained scores can then be compared 
to optimal cut point to identify the status of the subject.

The accuracy measure, Area under the MROC (AUC) curve explains the 
extent of correct classification and is given as
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The intrinsic measures of MROC curve sensitivity and specificity, the 
probabilities that diseased and healthy individuals respectively are identified 
accurately are given as
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The main objective of the paper is to provide comparison procedures 
based on the distance measures namely Mahalanobis and Bhattacharya 
distances. It is assumed that the scores of MROC curve follow normal 
distribution; hence, the distance measures are redefined using scores under 
normal distribution. The detailed methodology of comparison procedures 
that are proposed using these distance measures are given in subsequent 
subsections.

2.1 Comparison based on Mahalanobis Distance using Scores

The test scores for each subject is obtained using the linear combination of the 
MROC model. Further, it is assumed that the obtained scores follow normal 
distribution. If the test score of healthy and diseased populations tend to have 
equal variances, Mahalanobis distance can be used. The Mahalanobis distance 
based on scores is redefined under the setup of MROC model ‘i’ and is given 
by
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Here, D(1) and  D(2) are the Mahalanobis distances of two MROC curves under 
comparison. The null and alternative hypothesis to compare the distance 
measures is defined as

H D D H D DU U U U0
1 2

1
1 2: ~ :( ) ( ) ( ) ( )= ≠

The test statistic used for testing the above hypothesis is
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The curve with greater distance measure is said to be a better curve if the Z 
value obtained in equation (6) is significant.

2.2 Comparison based on Bhattacharya Distance using scores

The practical use of this procedure will come into existence when the scores 
of both populations have unequal variances. In such cases, Bhattacharya 
distance gives accurate information as it considers variances of both of 
populations instead of pooling them. Bhattacharya distance between the 
scores of healthy and diseased populations of an MROC curve ‘i’ can be 
obtained as 
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If DBU
( )1  and DBU

( )2  are Bhattacharya distances of two MROC curves to be 
compared, then the null and alternative hypothesis for testing two curves using 
their Bhattacharya distances is defined as

H D D H D DBU BU BU BU0
1 2

1
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The test statistic used for testing the above null hypothesis against alternative 
hypothesis is

 Z D D
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The variances in equation (8) are obtained using bootstrapping. A better curve 
is identified, if the Z value is greater than critical value otherwise the curves 
are said to have similar discriminating ability.

2.3 Comparison based on Mahalanobis Distance using Mean Vectors and 
Covariance Matrices

The conventional way of obtaining Mahalanobis distance is by using the mean 
vectors and pooled covariance matrix because the populations are assumed 
to have equal covariances. Mahalanobis distance between two populations, 
healthy and diseased for ith MROC curve is given by

 D Y X S Y X ii i i i i i( ) ( ) ; ,= −( )′ −( ) =( ) ( ) ( ) ( )−1

1 2  (9)

Here, X i( ) , Y i( )  and S i( )  are mean vectors and pooled covariance matrix of 
ith MROC curve and D( )1 , D( )2  are the Mahalanobis distances of two MROC 
curves. Then, the null and alternative hypothesis to compare the distance 
measures is defined as
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The test statistic used for testing the above hypothesis is
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If the obtained Z value is greater than the critical value, the curves under 
comparison are said to differ from each other. The curve with greater distance 
has a better discriminating ability.
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2.4 Comparison based on Bhattacharya Distance using Mean Vectors and 
Covariance Matrices

When the populations under study have unequal covariance matrices, it is 
better to use Bhattacharya distance instead of Mahalanobis distance to avoid 
loss of information. Bhattacharya distance between two multivariate normal 
populations; healthy and diseased is given by
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Here, DB
( )1   and DB

( )2  are Bhattacharya distance of MROC curves to be compared. 
The null and alternative hypothesis for testing two curves using their Bhattacharya 
distances is defined as
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The test statistic used for testing the above null hypothesis against alternative 
hypothesis is
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The curve with larger distance is said to be a better curve if the Z value is 
significant.

3. RESULTS AND DISCUSSIONS

The above inferential procedures are demonstrated with the help of real and 
simulated datasets. The simulated datasets are considered in such a way that 
they explain the various cases of MROC curves that are observed in real 
situations. These simulations are conducted at different sample sizes to observe 
the behavior of proposed models at small as well as large samples.
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3.1 Real data

3.1.1 Indian Liver Patient Dataset

Indian Liver Patient (ILP) dataset [2] consists of ten variables; age, gender, 
Total Bilirubin (TB), Direct Bilirubin (DB), Total Proteins (TP), Albumin, A/G 
ratio, SGPT, SGOT and Alkphos. It has 441(75.65%) males and 142(24.35%) 
females. The comparison is done between males and females to check if 
parameters involved in identification of liver diseases vary based on gender. 
The MROC analysis is performed on both males and females using R and the 
results obtained are tabulated.

Figure 1: Indian Liver Patient Dataset.

Table 1: MROC measures of ILP dataset.

Gender AUC Sensitivity 1-Specificity

Males 0.7541 0.6959 0.3041
Females 0.7232 0.6781 0.3219

ScoreMales = 0.0242*Age + 0.0063*TB + 0.2011*DB + 0.0012*Alkphos + 0.0029*SGPT
 – 0.0004*SGOT + 0.4145*TP – 0.8069*ALB + 0.2592*A/G

ScoreFemales = 0.0009*Age – 0.5375*TB + 1.1341*DB + 0.0012*Alkphos - 0.0056*SGPT
+ 0.0075*SGOT + 1.1394*TP – 1.8168*ALB + 1.5752*A/G
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From table 1, the AUC’s of males and females are almost equal indicating 
that their MROC curves have similar discriminating ability. MROC curves 
are drawn and it can be seen that they overlap each other. Further, the scores 
of males and females are computed using the linear combinations reported in 
Table 1.

The above figure depicts the MROC curves for Males and Females of ILP 
dataset 

In order to test the homogeneity of covariance matrices of two populations 
and variances obtained from the scores, Box’s M test and Levene’s F test are 
used. The Box’s M test value for females is 606.946 (0.000*) and for males 
is 1805.483 (0.000*) indicating that the covariance matrices are unequal. 
Further, the homogeneity of variances of obtained scores is tested for females 
and males, whose F values along with significance are 17.434 (0.000*) and 
63.167 (0.000*) respectively. This leads to a conclusion that Bhattacharya 
distance is to be used for comparing the curves. The comparison between 
males and females is done using the distance measures to verify whether there 
is any difference in the identification of Liver diseases between them, this is 
achieved by comparing MROC curves The distances obtained using scores as 
well as mean vectors and covariance matrices along with their Z values are 
portrayed in Table 2.

In the case of distance measures using scores, the Mahalanobis measure 
overestimates the actual distance between the populations than Bhattacharya 
measure, due to the violation of homogeneity of variances.  Further, when the 
homogeneity of covariance matrices is violated, the actual distance between 
populations is underestimated when Mahalanobis distance is used thus concluding 
that Bhattacharya distance should be used to avoid loss of information. The 
inference procedures indicate that there is no difference between the males and 
females with respect to identification of liver diseases. The Z values obtained for 
all the procedures are less than the standard value at 5% level of significance. 
This indicates that even though males are more prone to liver diseases when 
compared to females, the parameters used to identify the disease do not differ.

Table 2: Estimates and Z values of Distance Measures on ILP Dataset.

Distance Measures Males Females Z value

Based on Scores
Mahalanobis Distance (D

U
) 0.9027 0.8702 0.2162

Bhattacharya Distance (D
BU

) 0.2616 0.2918 0.2783

Based on Mean vectors
& Covariance Matrices

Mahalanobis Distance (D) 0.9146 0.8889 0.1935

Bhattacharya Distance (D
B
) 3.7070 3.4080 0.4641
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3.1.2. Salmon Fish data

Salmon Fish data [9] contains data samples of 50 Canadian and Alaskan salmon fishes. 
This dataset consists of two variables, namely diameter of rings for the first year of 
growth in freshwater and marine water. Linear combinations are obtained for both 
Canadian and Alaskan salmon fishes in order to identify the gender of the fish using 
the diameter of rings observed in fresh and marine water.  
Using the given information, gender identification in Canadian salmons can 
be done to the extent of 57.53% accurately, where as in Alaskan salmons it 
is observed to have an accuracy of 64.02%.  This indicates the fact that good 
extent of classification is seen in Alaskan salmons than Canadian salmons.  To 

Table 3: MROC measures of ILP dataset.

Salmon AUC Sensitivity 1-Specificity

Canadian 0.5753 0.5534 0.4465
Alaskan 0.6402 0.6002 0.3997
ScoreCanadian = - 0.0121*Freshwater - 0.00398*Marine

ScoreAlaskan =  0.0253*Freshwater + 0.0130*Marine

Figure 2: Salmon data.
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depict the same, MROC curves (Figure 2) are drawn for both types of Salmons 
and it is observed that the MROC curve for Alaskan salmon supersedes the 
curve of Canadian salmon indicating that the gender of the salmon fishes can 
be discriminated better using variation in diameter of rings in Alaskan salmons 
than Canadian salmons. 

The above figure depicts the MROC curves for Alaskan and Canadian 
Salmons

Further, comparisons are obtained for both Canadian and Alaskan salmon 
fishes to see whether the extent of correct identification of gender is better in 
one type of fishes when compared to the other. This is addressed using distance 
measures. The homogeneity of covariance matrices is tested using Box’s M 
test and the values for Alaskan and Canadian salmons are 3.805 (0.304NS) and 
1.040 (0.803NS) respectively. The scores obtained through linear combinations 
are tested for homogeneity of variances using Levene’s F Statistic and the 
results for Alaskan and Canadian salmons are 0.808 (0.373NS) and 0.590 
(0.446NS) respectively. These results indicate that the distance measure to be 
used for comparison is the Mahalanobis distance, since the variances and 
covariance matrices are observed to be homogneous. The distance measures 
along with Z values are computed and placed in table 4.

The distance measure values are obtained based on scores as well as 
mean vectors and covariance matrices. From the results, it is noticed that the 
distances are underestimated when Bhattacharya measure is used. This means 
that the exact distance is not computed using Bhattacharya distance when the 
variances/ covariances are equal. Thus, it is shown that, when the variance/
covariance matrices are homogenous, Mahalanobis measure is to be used to 
observe the actual distance rather than Bhattacharya measure.  Further, Z values 
observed in the table are not significant for all the four testing procedures 
indicating that the identification of gender of Canadian salmons is equivalent 
to that of Alaskan salmons. 

Table 4: Estimates and Z values of Distance Measures on ILP Dataset.

Distance Measures Canada Alaska Z value

Based on Scores
Mahalanobis Distance (D

U
) 0.4292 0.6001 0.4964

Bhattacharya Distance (D
BU

) 0.0482 0.0646 0.2261

Based on Mean vectors
& Covariance Matrices

Mahalanobis Distance (D) 0.4868 0.5805 0.2664

Bhattacharya Distance (D
B
) 0.0809 0.1083 0.3506
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3.2 Simulation Study

In this section, the sample size effect on the above proposed methods is 
demonstrated with the help of simulation studies. Four sets of multivariate 
normal random numbers are generated with mean vectors and covariance 
matrices given in table 5. Data is generated at various samples sizes 25, 50, 
100, 150, 200 and 300.
The combinations in table 3 are considered in such a way that they represent 
typical forms of MROC curve. Simulation 1 represents a best curve, simulation 
3 represents a better curve and simulations 2 and 4 represent moderate 
curves. Three combinations of these curves are considered to demonstrate 

Table 6: Measures of MROC curve for four sets of simulations at six different 
sample sizes.

Simulation
Sample Size 

(nD = nH 
= n)

AUC Sn 1-Sp Linear combination

1

25 0.9987 0.9832 0.0168 -19.57*X1+6.20*X2+15.05* X3

50 0.9983 0.9809 0.0191 -8.04*X1+5.37* X2+10.04* X3

100 0.9975 0.9764 0.0236 -5.89*X1+5.82* X2+8.29* X3

150 0.9951 0.9662 0.0338 -6.59*X1+5.14* X2+7.71* X3

200 0.9957 0.9685 0.0315 -7.34*X1+5.40* X2+7.99* X3

300 0.9954 0.9674 0.0326 -7.25*X1+5.47* X2+7.88* X3

2

25 0.7474 0.6824 0.3177 8.29*X1+1.25* X2-1.20* X3

50 0.7250 0.6638 0.3362 -0.29*X1+0.94* X2+1.40* X3

100 0.7066 0.6497 0.3503 -1.84*X1+1.09* X2+1.61* X3

150 0.7096 0.6519 0.3480 -0.97*X1+1.12* X2+1.41* X3

200 0.7069 0.6499 0.3501 -1.61*X1+1.12* X2+1.66* X3

300 0.6982 0.6433 0.3567 -1.14*X1+1.01* X2+1.49* X3

3

25 0.9345 0.8593 0.1407 17.00*X1+7.39* X2-1.06* X3

50 0.9217 0.8421 0.1578 13.78*X1+6.84* X2-1.24* X3

100 0.9377 0.8615 0.1385 10.77*X1+8.29* X2-1.24* X3

150 0.9288 0.8509 0.1491 13.35*X1+7.49* X2-1.17* X3

200 0.9292 0.8508 0.1491 14.13*X1+7.36* X2-1.21* X3

300 0.9269 0.8479 0.1521 14.50*X1+7.36* X2-1.14* X3
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4

25 0.7485 0.6925 0.3075 -1.41*X1-0.23* X2-0.73* X3

50 0.6125 0.5801 0.4199 -2.18*X1-1.32* X2+0.03* X3

100 0.6633 0.6177 0.3822 -0.74*X1-1.25* X2-0.23* X3

150 0.6415 0.6029 0.3971 0.67*X1-0.52* X2-0.32* X3

200 0.6529 0.6114 0.3886 -0.38*X1-0.64* X2-0.27* X3

300 0.6617 0.6181 0.3819 -1.30*X1-0.62* X2-0.25* X3

the comparison of MROC curves using proposed methods i.e, almost parallel 
curves (Simulation 1 and 3), One superior to the other (Simulation 2 and 3), 
and cross over curves (Simulation 2 and 4). The comparisons are made using 
all the proposed methods and the results are explained. The MROC model is 
applied to all the simulations at various sample sizes {25, 50, 100, 150, 200, 
300} to obtain the linear combination required to obtain scores and the results 
are given in Table 6.

Case 1: Almost Parallel MROC curves

The MROC curves considered for comparison in this case are Simulations 
1 and 3 (Fig 3a). The accuracies of Simulations 1 and 3 over all considered 
sample sizes is observed to be around 99% and 93% respectively, indicating 
that simulation 1 has a better capacity in discriminating the subjects into one of 
the two classes. This is further proved using the proposed testing procedures. 

(a) The MROC curves 
in the graph indicate 
the case of almost 
parallel curves

(b) The MROC curves 
in the graph depict the 
curves where one is 
superior to the other

(c) The MROC curves in 
the graph depict curves 
that cross each other

Figure 3: MROC curves of the considered combinations.
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A case of MROC curves where it is difficult to identify a better curve is 
when they cross each other. Simulations 2 and 4 are the sets that relate to 
the phenomenon where the curves cross each other (Fig 3c). The accuracies 
observed for simulation 2 and simulation 4 after performing MROC analysis 
are around 70% and 66% respectively at all sample sizes. 

The distances observed in simulation 2 and simulation 4 using scores (Table 9) of 
the MROC model are approximately equal portraying the fact that the overlapping area 
in both simulations is same. The Z values obtained through inference procedures are 
smaller than the table value at 5% level. This shows that simulation 2 and simulation 
4 have similar discriminating capacity. 

The distances observed in simulations 2 and 4 using mean vectors and 
covariance matrices (Table 9) are approximately equal thus concluding that 
the MROC curves do not differ from each other. The Z values obtained at all 
sample sizes are smaller than the standard value at 5% level  showing that 
sample size does not affect the discriminating ability of the curves. 

DISCUSSIONS

The main objective of the paper is to compare two MROC curves using distance 
measures based on the scores obtained through linear combination and mean 
vectors and covariance matrices. The importance of distance measures in 
classification led to the proposal of comparison procedures using two distance 
measures. Mahalanobis distance considers equal variances/covariances and is 
calculated for both the scores of the MROC curve as well as mean vectors 
and covariance matrices of the data. Another distance measure namely 
Bhattacharya distance that considers unequal variances/covariances between 
the populations is also used, since there are no restrictions on covariance 
matrices of healthy and diseased populations in MROC model. The main 
reason for considering two distance measures is that the distance between two 
populations is either overestimated or underestimated when the assumption of 
homogeneity of variances/covariance matrices is ignored.

The proposed methods are explained by using real datasets and simulation 
studies. Further, the effect of sample size on these methods is studied by applying 
the procedures at various sample sizes. The results indicate that all the proposed 
methods provide similar results and can be applied based on the nature of variances/
covariance matrices. Further, it is noticed that the sample size does not affect the 
comparison procedures thus making them a valuable tool for comparisons. In 
ILP data, the MROC curves obtained for males and females do not differ from 
each other indicating a similar extent of correct classification for both genders. 
In Salmon data, the MROC curves obtained for Canadian and Alaskan salmons 
are proved to be indifferent when the gender of the fish is to be identified. The 
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results further depict that the distances are underestimated when the property of 
homogeneity of variances/covariance matrices is neglected. Further, illustrations 
regarding three different scenarios (almost parallel curves, one superior to the 
other and curves that cross each other) are given with the support of simulation 
studies. This attempt is to enhance the knowledge of the researcher in making 
the use of distance measures in comparing curves rather than using the intrinsic 
and summary measures of ROC. The above three scenarios are handled using 
the following combinations. The difference between simulations 1 and 3 and 2 
and 3 is observed at all sample sizes using all the proposed procedures to mimic 
the real situation where the curves (tests) are almost parallel and one superior 
to other. The MROC curves of simulations 2 and 4 are compared and proved to 
be indifferent indicating a similar level of classification in both the curves thus 
giving an insight about the case of curves that cross each other. The present paper 
reveals an interesting fact pertaining to the case of curves that cross each other. 
Along with the summary measures and intrinsic measures, distance measures 
have also not extracted the true difference between this type of curves. Hence, 
this case requires a special attention to distinguish the curves and to determine 
which test is to be used for the classification. However, it is shown that distance 
measures can also be used to explain the true difference between the two MROC 
curves apart from the conventional measures.
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