# On The Generalized Divided Differences

#### SUBHASIS RAY\* AND SUBHANKAR GHOSH

Department of Mathematics, Siksha Bhavan, Visva-Bharati, Shantiniketan, West Bengal, India

\*Email: subhasis.ray@visva-bharati.ac.in

Received: February 06, 2016 Revised: March 19, 2016 Accepted: July 02, 2016

Published online: September 05, 2016

The Author(s) 2016. This article is published with open access at www.chitkara.edu.in/publications

**Abstract** Let  $V \subset \Re$  be a finite set and  $f: \Re \to \Re$ . f(V) is divided difference of f at the points of V. The m-th order Peano derivative of  $f(\{x\} \cup V)$  with respect to x is called generalized divided difference and is denoted by  $f_m(x,V)$ . The properties of  $f_m(x,V)$  are studied.

**Keywords:** Peano derivative, Divided difference, Riemann\* derivative, n-convex function.

MSC 2010: Primary 26A24, 26A99

#### 1. INTRODUCTION

Let  $f_m(x,V)$  be m-th order Peano derivative of  $f(x_0, x_1"..." x_n, x)$  regarded as a function of x. In [1] the authors have termed the iterated limit of divided difference by generalized divided difference and use it to study the properties of n-convex functions. In this article we have studied the properties of that generalized divided difference, which is equivalent to  $f_m(x,V)$ .

Let  $f: E \to \Re$ ,  $V = \{x_0, x_1, ..., x_n\} \subset E$ , then the divided difference of f at V is defined by

$$f(V) = f(x_0,...,x_n) = \sum_{i=0}^{n} \frac{f(x_i)}{\omega'(x_i)}$$

where

$$\omega(x) = \prod_{i=0}^{n} (x - x_i).$$

Mathematical Journal of Interdisciplinary Sciences Vol-5, No-1, September 2016 pp. 53–59



Ray, S Ghosh, S

We write f(x; V) instead of  $f(V \cup \{x\})$ .

Let  $f: E \to \Re$ , and  $n \in \mathbb{N}$ . Then f is n-convex in E if for each subset V of E containing n+1 points,  $f(V) \ge 0$ .

Let  $x \in E - V$  be right hand limit point of E, then right Peano derivative of divided differences with respect to the set E is defined inductively as

$$f_1^+(x;V) = \lim_{\substack{y \to x^+ \\ y \in E}} \frac{f(y;V) - f(x;V)}{(y-x)}$$

and if  $f_r^+(x;V)$  exist for  $1 \le r < m$ , then m-th order derivative

$$f_m^+(x;V) = \lim_{\substack{y \to x^+ \\ y \in E}} \gamma_m(f,x,y,V)$$

where

$$\gamma_m(f,x,y,V) = \frac{m!}{(y-x)^m} \left\{ f(y;V) - \sum_{i=0}^{m-1} \frac{(y-x)^i}{i!} f_i^+(x;V) \right\}.$$

Here we assume  $f_0^+(x;V) = f(x;V)$ .

If  $V = \varphi$ , then we write  $\gamma_m(f,x,y)$  instead of  $\gamma_m(f,x,y,\varphi)$ . In this case  $f_m^+(x;V)$  is the usual right hand Peano derivative of f at x of order f and is denoted by  $f_m^+(x)$ . If f is a left hand limit point, we define left hand Peano derivative of divided difference  $f_m^-(x;V)$  in similar way. If f is both sided limit point and  $f_m^+(x;V)$  and  $f_m^-(x;V)$  both exist and  $f_m^+(x;V) = f_i^-(x;V)$  for f is said to have the f-th order Peano derivative of divided difference  $f_m(x;V)$ . Clearly for a fixed f is the f-th order Peano derivative of the function f is the f-th order Peano derivative of the function f is the f-th order Peano derivative of the function f is the f-th order Peano derivative of the function f is the f-th order Peano derivative of the function f is and only if f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f is f-th order Peano derivative of the function f-th order Peano derivative of f-th order

Let  $f: E \to \Re$  and  $V \subset E$  be finite and  $x \in E - V$  be a limit point of E. Let  $\{x_1, ..., x_k\}$  be k distinct points in E - V. Then as in [1]

$$[f,x,V]^k = \lim_{\substack{x_k \to x \\ x_k \in E}} ... \lim_{\substack{x_1 \to x \\ x_i \in E}} f(x,x_1,...,x_k;V).$$

If  $V = \varphi$ , then  $[f, x]^k$  is called k-th order Riemann\* derivative of f at x. In what follows from now we shall drop  $y \in E$  under the limit notation.

## **2. PROPERTIES OF** $f_n(x;V)$

**Theorem 2.1.** Let  $f: E \to \Re$  be continuous,  $V \subset E$  be finite set and  $x \in E - V$  be right limit point of E. Now

On The Generalized Divided Differences

$$\lim_{x_n \to x^+}, \dots, \lim_{x_0 \to x^+} n! f(x_0, x_1, \dots, x_n; V)$$

exists if and only if  $f_m^+(x;V)$  exists and they are equal.

**Proof.** We prove this by induction, for n = 1

$$\lim_{x_1 \to x^+} \lim_{x_0 \to x^+} f(x_0, x_1; V) = \lim_{x_1 \to x^+} f(x, x_1; V)$$

$$= \lim_{x_1 \to x^+} \frac{f(x; V) - f(x_1; V)}{x - x_1}$$

$$= f_1^+(x; V).$$

Suppose the theorem is true for n = k,  $k \ge 1$ . We prove the theorem for n = k + 1 and so the proof will be completed by induction. So

$$\lim_{x_r \to x^+} \dots \lim_{x_0 \to x^+} r! f(x_0, x_1, \dots, x_r; V)$$

and  $f_r^+(x;V)$  exists with equal value for r = 1,2,...,k. Now,

$$\lim_{x_{r+1} \to x^+} \dots \lim_{x_{r} \to x^+} (r+1)! f(x_0, x_1, \dots, x_{r+1}; V) = \lim_{x_{r+1} \to x^+} (r+1) f_r^+(x; V \cup \{x_{r+1}\})$$
 (1)

As in Newton divided difference interpolation formula, we can write

$$\begin{split} f\left(u;V\right) &= f\left(x_{0};V\right) + \left(u - x_{0}\right) f\left(x_{0}, x_{1};V\right) + \dots \\ &+ \left(u - x_{0}\right) \dots \left(u - x_{r-1}\right) f\left(x_{0}, \dots, x_{r};V\right) \\ &+ \left(u - x_{0}\right) \dots \left(u - x_{r}\right) f\left(u, x_{0}, \dots, x_{r};V\right). \end{split}$$

Now performing the limit  $\lim_{x_r \to x^+} \dots \lim_{x_0 \to x^+}$  on both sides we get

$$f(u;V) = f(x;V) + (u-x)f_1^+(x;V) + \dots$$
$$\dots + \frac{(u-x)^r}{r!}f_r^+(x;V) + \frac{(u-x)^{r+1}}{r!}f_r^+(x;V) \cup \{u\}).$$

So

Ray, S Ghosh, S

$$(r+1)f_r^+(x;V \cup \{u\}) = \frac{f(u;V) - f^+(x;V) - \sum_{i=1}^r \frac{(u-x)^i}{i!} f_i^+(x;V)}{\frac{(u-x)^{r+1}}{(r+1)!}}$$

Putting  $u = x_{r+1}$  and using (1) the proof follows

**Remark 2.2.** Theorem 2.1 also hold for left hand derivative. And for  $V = \varphi$ , it gives the well known result that Peano derivative and Riemann\* derivative are equivalent.

**Remark 2.3.** By Theorem 2.1  $f_n^+(x;V)$  is same as  $[f,x,V]^{(n,+)}$  in [1]

**Theorem 2.4.** Suppose  $f: E \to \Re$  and  $V \subset E$  be finite set and  $x \in E - V$ . Then  $f_k(x;V)$  is divided difference of  $f_k(x;\{t\})$  as a function of t.

**Proof.** As we define  $f_n(x;V)$  is same as  $[f,x,V]^{(n)}$  of [1]. So by Corollary 3.2 of [1] the result follows.

**Lemma 2.5.** If  $f_k(x;V)$  exists and if  $w \in V$ . Then

$$f_k(x;V) = \frac{1}{w-x} \{ k f_{k-1}(x;V) - f_k(x;V - \{w\}) \}.$$

**Proof.** We prove this by induction, for k = 1

$$f_1(x;V) = \lim_{y \to x} f(x, y; V)$$

$$= \lim_{y \to x} \frac{f(x;V) - f(x, y; V - \{w\})}{w - x}$$

$$= \frac{f(x;V) - f_1(x; V - \{w\})}{w - x}$$

So suppose,  $f_i(x;V) = \frac{1}{w-x} \{ i f_{i-1}(x;V) - f_i(x;V - \{w\}) \}$  for i = 1,2,...,k-1

Now,

$$f_{k}(x;V) = \lim_{y \to x} \frac{f(y;V) - f(x;V) - \sum_{i=1}^{k-1} \frac{(y-x)^{i}}{i!} f_{i}(x;V)}{\frac{(y-x)^{k}}{k!}}$$

$$= \lim_{y \to x} \frac{(y-x)f(x,y;V) - \sum_{i=1}^{k-1} \frac{(y-x)^{i}}{i!} \frac{if_{i-1}(x;V) - f_{i}(x;V - \{w\})}{w-x}}{\frac{(y-x)^{k}}{k!}}$$

On The Generalized Divided Differences

$$= \lim_{y \to x} \frac{(y - x)}{(w - x)} \{ f(y; V) - f(y, x; V - \{w\}) \} - \sum_{i=1}^{k-1} \frac{(y - x)^i}{(i - 1)!} \frac{f_{i-1}(x; V)}{w - x} + \sum_{i=1}^{k-1} \frac{(y - x)^i}{i!} \frac{f_i(x; V) - f_i(x; V)}{w - x}$$

$$= \lim_{y \to x} \frac{(y - x)^{i-1}}{k!} \frac{k!}{(i - 1)!} \frac{(y - x)^{i-1}}{f_{i-1}(x; V)}$$

$$= \frac{k}{w - x} \lim_{y \to x} \frac{f(y; V) - \sum_{i=1}^{k-1} \frac{(y - x)^{i-1}}{(i - 1)!} f_{i-1}(x; V)}{(y - x)^{k-1}} \frac{(y - x)^{i}}{k!} \frac{(y - x)^{i}}{k!}$$

$$= \frac{1}{w - x} \lim_{y \to x} \frac{f(y; V - \{w\}) - f(x; V - \{w\})}{k!} \frac{(y - x)^{k}}{k!}$$

$$= \frac{1}{w - x} [kf_{k-1}(x; V) - f_k(x; V - \{w\})]$$

The proof is complete by induction.

**Theorem 2.6.** Let V be a finite set and  $x_i \in V$  for i = 0,1,...,n. Suppose  $f: E \to \Re$  be such that  $f_1$  exists on E. Then divided difference of  $f_1(x; V - \{x_0, ..., x_n\})$  at the points  $x_0, x_1, ..., x_n$ , is

$$f_1(x_0, x_1, ..., x_n; V - \{x_0, x_1, ..., x_n\}) = \sum_{i=0}^{n} f_1(x_i; V - \{x_i\})$$

*Proof.* We prove it by induction. Suppose n=1 and by Lemma 2.5 we get

$$f_1(x_0; V - \{x_0\}) = \frac{1}{x_1 - x_0} \{ f(x_0; V - \{x_0\}) - f_1(x_0; V - \{x_0, x_1\}) \}$$

$$f_1(x_1; V - \{x_1\}) = \frac{1}{x_0 - x_1} \{ f(x_1; V - \{x_1\}) - f_1(x_1; V - \{x_0, x_1\}) \}$$

Since 
$$f(x_0; V - \{x_0\}) = f(x_1; V - \{x_1\})$$
  

$$f_1(x_0; V - \{x_0\}) + f_1(x_1; V - \{x_1\}) = \frac{f_1(x_0; V - \{x_0, x_1\}) - f_1(x_1; V - \{x_0, x_1\})}{x_0 - x_1}$$

$$= f_1(x_0, x_1; V - \{x_0, x_1\})$$

So suppose it is true for (n-1),  $n \ge 2$ . Hence

$$\begin{split} &f_1(x_0, x_1, \dots, x_n; V - \{x_0, x_1, \dots, x_n\}) \\ &= \frac{f_1(x_0, \dots, x_{n-1}; V - \{x_0, x_1, \dots, x_n\}) - f_1(x_1, \dots, x_n; V - \{x_0, x_1, \dots, x_n\})}{x_0 - x_n} \\ &= \frac{\sum_{i=0}^{n-1} f_1(x_i; V - \{x_i, x_n\}) - \sum_{i=1}^{n} f_1(x_i; V - \{x_i, x_0\})}{x_0 - x_n} \\ &= \frac{f_1(x_0; V - \{x_0, x_n\}) - f_1(x_n; V - \{x_0, x_n\})}{x_0 - x_n} \\ &+ \frac{\sum_{i=1}^{n-1} \left\{ f_1(x_i; V - \{x_i, x_n\}) - f_1(x_i; V - \{x_i, x_0\}) \right\}}{x_0 - x_n} \\ &= f_1(x_0, x_n; V - \{x_0, x_n\}) + \sum_{i=1}^{n-1} f_1(x_i; V - \{x_i\}) \\ &= \sum_{i=0}^{n} f_1(x_i; V - \{x_i\}). \end{split}$$

**Corollary 2.7.** If f is (n + 1) convex on E,  $f_1$  exists on E; then  $f_1$  is n convex on E.

**Proof.** Suppose f is (n+1) convex then for any finite set  $V = \{x_0, x_1, ..., x_n\} \subset E$  we have

$$f_1(x_0; \{x_1, ..., x_n\}) = \lim_{y \to x_0} \frac{f(y, x_1, ..., x_n) - f(x_0, x_1, ..., x_n)}{(y - x_o)}$$
$$= \lim_{y \to x_0} f(y, x_0, x_1, ..., x_n) \ge 0$$

Similarly,  $f_1(x_i; V - \{x_i\}) \ge 0$  for all i = 1, 2, ..., n.

Hence from Theorem 2.6

On The Generalized Divided Differences

$$f_1(x_0, x_1, ..., x_n) \ge 0.$$

Therfore  $f_1$  is n convex on E.

### **REFERENCES**

- [1] Fejzic H, Svetic R E and Weil C E,: Differentiation of n-convex functions. *Fund. Math* 209 **Vol-1 9–25** (2010) zbl 1202.26008.
- [2] S. N. Mukhopadhayay and S. Ray,: Mean value Theorems for divided differences and approximate Peano derivatives. *Mathematica Bohemica* 134 **Vol-2** (2009), 165–171, zbl 1212.26075.

59