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Abstract The, “Complex systems”, stands as a broad term for many diverse 
disciplines of science and engineering including natural & medical sciences. 
Complexities appearing in various dynamical systems during evolution are now 
interesting subjects of studies. Chaos appearing in various dynamical systems 
can also be viewed as a form of complexity. For some cases nonlinearities 
within the systems and for other cases piecewise continuity property of the 
system are responsible for such complexity. Dynamical systems represented 
by mathematical models having piecewise continuous properties show 
strange complexity character during evolution. Interesting recent articles 
explain widely on complexities in various systems. Observable quantities 
for complexity are measurement of Lyapunov exponents (LCEs), topological 
entropies, correlation dimension etc.

The present article is related to study of complexity in systems having 
piecewise continuous properties. Some mathematical models are considered 
here in this regard including famous Lozi map, a discrete mathematical 
model and Chua circuit, a continuous model. Investigations have been carried 
forward to obtain various attractors of these maps appearing during evolution 
in diverse and interesting pattern for different set of values of parameters 
and for different initial conditions. Numerical investigations extended to 
obtain bifurcation diagrams, calculations of LCEs, topological entropies and 
correlation dimension together with their graphical representation.
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1. INTRODUCTION

A nonlinear system, on the contrary to linear system, is a system which 
does not satisfy the principle of superposition. That is output of a nonlinear 
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system is not directly proportional to the input. When we take into account 
real phenomena, we find all most all real systems are nonlinear. Thus, the 
nonlinear problems are of interest to engineers, physicists, biologists, 
mathematicians and many others because most of the systems are inherently 
nonlinear in nature. Parameters of nonlinear systems completely specify the 
property of nonlinearity of the system. When parameters of such systems vary 
in certain manner, we observe: Instability, bistability, bifurcations, chaos etc. 
Linearization of a nonlinear model representing a real system without proper 
justification often leads to complete wrong results. We can prove this fact for 
many nonlinear problems solved by linearizing the model e.g. damped and 
forced pendulum evolving chaotically, problems of viscous fluid flow etc.

A complex system can be viewed as a system composed of many components 
which may interact with each other. Complexity of different type has been 
explained extendedly through some important articles[6,13,20,21] A complex 
system exhibits some (and possibly all) of the following characteristics:

• Some degree of spontaneous order (spontaneous order is the spontaneous 
emergence of order out of seeming chaos).

• Robustness of the order (robustness is the ability of a computer system to 
cope with errors during execution).

• Sensitivity to initial condition (chaos). A System is chaotic if it possesses 
an strange attractor.

• Numerosity (broken symmetry and the nature of the hierarchical structure 
of science).

Actual motivation for this study is to see how complexities are arising for 
any piece wise continuous system even if it is not necessarily non-linear. 
Even a linear system can display complexity behavior during evolution if it is 
piecewise continuous.

2. MEASURES OF COMPLEXITIES

For any complex system, some of the measurements which justify complexity 
are as follows:

2.1 Lyapunov Characteristic Exponents (LCEs)

The motion be chaotic if the system exhibits sensitive dependence on 
initial conditions. That is two trajectories starting together with nearby 
positions, (initial conditions), will rapidly diverge from each other and have 
totally dissimilar features. The long-term prediction becomes impossible 
as the small qualms are amplified enormously fast. Lyapunov characteristic 
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exponents[1,7-10,19,22], is very effective tool for identification of regular and 
chaotic motions since it measures the degree of sensitivity to initial condition in 
a system. Actually, Lyapunov exponents (λ) provide measure the exponential 
divergence of orbits originating nearby. If λ > 0, then it implies the system is 
evolving chaotically, (or chaos is observed), and if λ < 0 then it implies the 
evolution is regular, (or regularity or ordered motion).

For a smooth one dimensional map f and x0 an initial point the Lyapunov 
Exponent be defined by

λ(x0) = lim log|f (x )| log|f (x )| log|f (x )| .... log|f (x
k 0 1 2 k 1→∞ −′ + ′ + ′ + + ′ ))|( )

= lim log|f (x )|
k k

k 0

k 1

→∞
=

−

′∑  (1)

where, x1, x2, . . . . , xk–1 , . ., are iterates of x0 under f.

2.2 Topological Entropy

Topological entropy provides the measure of complexity. More topological 
entropy means more complex the system is. A topological entropy measures 
the exponential growth rate of the number of distinguishable orbits as time 
advances in the system [2].However positivity of its value does not justify the 
system be chaotic.

Consider a finite partition of a state space X denoted by P = { A1, A2, A3,. . 
. ., AN}. A measure μ on X with total measure μ = 1 [21] defines the probability 
of a given reading as

p A ii i= =µ( ), , ,1 2 …,N.

Then the entropy of the partition be given by

H(p) p logpi i
i 0

N

= −
=
∑  (2)

2.3 Correlation Dimension

Correlation dimension provides the dimensionality of the evolving system,[12]. 
It is a kind of fractal dimension and its numerical value is always non-integer. 
Being one of the characteristic invariants of nonlinear system dynamics, 
the correlation dimension actually gives a measure of complexity for the 
underlying attractor of the system. To determine correlation dimension one 
has to use statistical method, [16].
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Consider an orbit O(x1) = {x1, x2, x3, x4, . . ….}, of a map f: U → U, where U 
is an open bounded set in Rn. To compute correlation dimension of O(x1), for a 
given positive real number r, we form the correlation integral,

 C(r) = lim
1

n(n 1)
H(r x x )   ,i, j = 1, 2, 3, . .

n i j
i j

n

→∞
≠−

− −∑   . , n.  (3)

where H (x) = 
0,x 0

1,x 0

<
≥





is the unit-step function, (Heaviside function). The summation indicates the 
number of pairs of vectors closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures 
the density of pair of distinct vectors xi and xj that are closer to r.

Steps are as follows: for a given small positive number r, first we construct 
the correlation integral C(r) defined by (3) where the summation counts: how 
many pairs of vectors are closer than r when 1 ≤ i, j ≤ n and i ≠ j. Actually, C (r 
) measures the density of pair of distinct vectors xi and xj that are closer than r. 
Finally, the correlation dimension DC is defined as

  DC  = lim
logC(r)

log rr 0→
 (4)

3. PIECEWISE CONTINUOUS DYNAMICAL SYSTEMS

It is discrete or continuous time dynamical system whose phase space is 
partitioned by a switching boundary into different regions, each associated to 
a different functional form of the system vector field.

Mathematically, a piecewise-defined map is that which can be defined 
by multiple sub-function applied to a certain interval of the main function’s 
domain (a sub-domain). For example, consider the system containing terms 
such as the absolute value function:

            | x | = 
− <

≥




x,if x 0

x,if x 0
 (5)

Figure 1: Piecewise continuous function.
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Or terms like | x + 1 |, | x – 1 |, Greatest Integer Function [21], Heaviside step 
function, Sign function etc.The pictured function, for example, is piecewise 
continuous throughout its sub domain, but is not continuous on the entire 
domain. The above function contains a jump discontinuity at x0.

Even for a linear one dimensional piecewise continuous map, [11]

F(x) = α µ
β

x ,if x 0

x ,if x 0

+ ≤
+ >



 µ

where α, β, μ are constants and for α > 0, β < 0 and 

with μ = ± 1 one gets very interesting results for this map. For α = 0.4,  

μ = 1 and –80 ≤ β ≤ 0 bifurcation diagram of this map is shown Figure 2. It is 
showing period adding and chaos doubling criteria.

4. COMPLEX DYNAMICS OF SOME PIECEWISE CONTINUOUS 
SYSTEMS

4.1 In our study, as an example, first we have considered the piecewise 
continuous map

 f x e a x b( ) = − +  (6)

For a = 5.0, this map shows period doubling bifurcation leading to chaos 
for decreasing values of b from 0.4 and then, finally, it reduces to cycle one,  
Figure 3(a).

Figure 2: Bifurcation diagram of one dimensional piecewise continuous map 
[11] The above bifurcation diagram clearly indicates period doubling & chaos 
adding phenomena.
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Plots of topological entropy & correlation dimension are shown in Figure 4: 
topological entropy for a=0.5 and –0.5≤ b ≤0.5 and correlation dimension 
curve for a=0.53 and b= –0.3.

Using linear fit to the correlation curve data one obtains

 y x= −0 52914 0 256885. .  (7)

So, the correlation Dimension be obtained approximately as 0.53.

4.2 Dynamics of Lozi Map

Lozi map[14], is the subject of many recent articles [3-5,18] focused on its various 
properties. Quadratic term of Hénon map is replaced with a piecewise linear 
contribution in the former which produces some interesting chaotic attractors. 
The equations governing Lozi system can be written from Henon system

 

Figure 3(a): Bifurcation diagram for – 0.7 ≤ b ≤ 0.4 (left figure) and 3(b) LCE 
plot for – 0.5 ≤ b ≤ 0.5(right figure).

 

Figure 4: Plots of topological entropy (left) and correlation curve (right). 
Topological entropy plot be obtained for a = 0.5 and – 0.5 ≤ b ≤ 0.5 and 
correlation curve be obtained for a = 0.53 and b = – 0.3.
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  x y axn+ = + −1
21  (8)

y bxn n+ =1

By a piecewise linear contribution, |x|,

Lozi – map:         x y a xn+ = + −1 1

 y bxn n+ =1  (9)

Lozi map shows abrupt change in behavior during transition from order-
to disorder, (or chaos), and reveals interesting results. Attractors obtained 
during motion are also of very special type. Fixed Points of map (1) are:

P
a b

b

a b
P

a b

b

a b1 2

1

1 1

1

1 1
* *, , ,=

+ − + −






 =

− − − −






 and the Jacobian matrix is

J =
−









a sign x

b

( ) 1

0

Stability of fixed points P
1
* and P

2
*: One observes, the fixed points P1

* and P2
*, 

are stable if |b|< 1.

The map (9) is different from many other 2–dimensional maps because of its 
piece wise continuous property and displays some special character during 
evolution, [18]:

•	 For, if we take b = –1 and a = 0.9, then
 P1

*≡ (0.344828, –0.344828) and P2
*≡ (0.909091, –0.909091)

•	 But the eigen values corresponding to P1
* and P2

*are same and be given by 
– 0.48 ± 0.893029 I ⇒ both P1

* and P2
*should be stable and orbits starting 

nearby these should be regular and not chaotic.
•	 for b ≤ 1, a ≤ b – 1, it has no fixed points and has a unique fixed point 

if b – 1 < a ≤ 1 – b. But, if a > 1 – b, the map has two fixed points. The 
parameters assumed a = 0.9, b = –1 fall in this category. b – 1 < a ≤ 1 – 
b, i. e. – 2 < a ≤ 2, and accordingly one gets only one fixed point,P1

*≡ 
(0.344828, –0.344828) and it is a stable fixed point.

Characteristic Behavior For b = –1 and four values of a = 0.9, 1.5, 1.7, 1.99, 
phase plots are obtained starting closely to their corresponding fixed points 
and found all are periodic limit cycles: (Figure 5)
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Taking b other than b = –1, but | b | < 1 and satisfying b – 1 < a ≤ 1 – b always 
lead to regularity.

Phase Plots nearby P1
*and P2

* fixed points have drawn. Nearby P1
*and 

P2
*, respectively, taken initial points as (0.35, –0.35) and (0.9, –0.9) we 

obtain, respectively, a stable limit cycle and an interesting type of strange  
attractor. Corresponding to these two initial conditions, plots of topological 
entropies for b = –1 and 0.8 ≤ a ≤ 1.1 are obtained and shown in the lower 
row of Figure 6. and (0.9, –0.9) and lower row represents the plots topological 
entropies for corresponding cases for parameter values b = –1 an d a = 0.9.
For b = 0.1 and 0.6 ≤ a ≤ 1.6 bifurcation diagrams, (upper row of Figure 7), are 
given below. It clearly indicates piecewise continuity while performing show-
ing period doubling cascade. Another Similar diagram, (*lower row of Figure 
7), is shown below for a = 1.5 and –0.6 ≤ b ≤ 1.6. Here we find bi-stability and 
overlapping criteria of bifurcation.

Plots of Lyapunov exponents (LCEs) for a = 0.9, b = –1 with two different 
initial conditions: (a) (0.35, –0.35) & (b) (0.9, –0.9) are given by Figure 8.

With b = –1 and values of a <1 – b, but very close to unity, map (1) 
displays interesting attractors. Some of such attractors are shown in Figure. 

 

 

Figure 5: Plots are limit cycles for different set of values for a and b.
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Figure 6: Upper row represent the plots of attractors when initial points are 
(0.35, –0.35).

Figure 7: Bifurcation diagrams of Lozi map.
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9. Attractors displayed are obtained when the system (1) started evolving at 
different initial points.
Next, let us study the cases when a > 1 – b i.e., when b = –1 and a > 2, then, 
we get points of cycles 2, 4, etc. For, a = 1.7, b = 0.5, one gets two fixed points 
given by P1*= (0.4545, 0.2273) and P2* = (–0.8333, –0.4167) approximately; 
for a = 2.8, b = –1, one gets 4 fixed points given by P1*= (–0.0676, –0.4054), 
P2*= (0.2083, –0.2083), P3*= (0.4054, 0.0676) and P4*= (–1.25, 1.25) 
approximately.

 
Figure 8: LCE plots for above two cases.

 

 
Figure 9: (Continued).
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For the case when a = 1.7, b = 0.5, taking initial points close to P1* and P2*as 
points (0.4, 0.2) and (–0.8, –0.4), time series and phase plots are obtained and 
shown in Figure 10 below. Both the orbits obtained show chaotic motion with 
strange attractors.

4.3 Chua’s Circuit

Chua’s map,[15],[17] ,is related to Chua’s electric circuit theory that exhibits 
classic chaos theory behavior invented by Japanese Prof. Leon O. Chua in 
1983. This means roughly that it is a “nonperiodic oscillator”; it produces 
an oscillating waveform that, unlike an ordinary electronic oscillator, never 

 

Figure 9: Some attractors of Lozi system when b = –1 and different values of 
a such that a < 1 – b, but closer to unity, and with different initial conditions.

 

 
Figure 10: Plots of Lyapunov exponents, (left figure), and corresponding 
strange attractors, (right figure).
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“repeats”. It is usually made of a circuit containing an amplifier with positive 
feedback.

•	 NR is a nonlinear negative resistance called a Chua’s diode.
•	 v1 and v2 and i are voltages across capacitors C1 and C2 and current through 

inductor L respectively

The circuit equations are given by

dv

d t

G(v v ) f(v )

C
,

dv

d t

G(v v ) i

C
,

d i

d t

v

L
1 2 1 1

1

2 1 2

2

2=
− −[ ]

=
− +[ ]

=−

where f v G v G G v B v Bb a b p p( ) .1 1 1 10 5= + −( ) + − −( )  be the characteristic 
of NR .

In dimensionless form these equations can be written as

dx
dt

a y x g x dy
dt

x y z dz
dt

by= − − ( )  = − + =− ,

where a and b are dimensionless parameters and

g(x ) c x
1

2
(d c)(|x 1| |x 1|)= + − + − −

where c & d are constants.
Above systems exhibit many interesting phenomena including period – 
doubling cascades to chaos.

For regular motion one takes: a = 10, b = 26.58,  c= –5/7, d = –8/7; (x (0), y 
(0), z(0)) = (1.6, 0, 1.6) (Figure 12)

Chua circuit diaplays chaos for parameters a = 15, b=26.58, c = –5/7, d = 
–8/7; with initial condition (x(0),y(0),z(0)) = (1.6, 0, 1.6) motion is chaotic and 
confirmed through plots of time series (Figure 13)

Figure 11: Diagram of Chua circuit.
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Figure 12: Plots of time series of Chua circuit for regular case when a = 10,  
b = 26.58, c = –5/7, d = –8/7; (x(0),y(0),z(0)) = (1.6, 0, 1.6).

Figure 13: Time series plots chaotic Chua circuit.

Figure 14: LCEs plot of Chua circuit. Barring some initial steps, (transient 
cases), LCEs are all positive.

For chaotic case of Chua circuit, we have numerically calculated Lyapunov 
exponents (LCEs) and shown in Figure 14
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DISCUSSION AND CONCLUSION

Chaotic evolutions are possible not only in nonlinear systems but also in 
some linear systems such as in 2-D Lozi map and also 1-D map stated in 
[11] provided the systems show piecewise continuity property. With this 
piecewise continuity in systems interesting chaotic attractors emerged through 
numerical calculations .Dynamics of Chua’s circuit is widely studied and 
bifurcation analysis have been done by varying each parameters displaying 
interesting behavior. Also, different complexity measures have been carried 
by researchers. Here, also we have carried forward some studies on this map. 
In conclusion, it appears piecewise continuous dynamical systems are equally 
interesting and one should move forward in this direction.
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