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This work deals with the analytical solution of advection dispersion equation arising in solute transport 
along unsteady groundwater flow in finite aquifer. A time dependent input source concentration is 
considered at the origin of the aquifer and it is assumed that the concentration gradient is zero at the 
other end of the aquifer. The optimal homotopy analysis method (OHAM) is used to obtain numerical 
and graphical representation.
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1. Introduction
Solutions of advection-dispersion equation (ADE) may be 
used to predict the concentration of solutes in unsteady 
groundwater flow. Advection causes the contaminant plum 
to flow in the direction of groundwater water without any 
change in the shape. Dispersion of plum arises due to the 
variation in groundwater velocity. The heterogeneity of the 
porous medium is responsible for dispersion. The solute 
transport in heterogeneous aquifer is thus the combined 
process of advection and dispersion. The dispersion in 
the direction of groundwater flow is called longitudinal 
dispersion and the transverse dispersion is perpendicular to 
the groundwater flow direction. The ADE can be derived 
using Fick’s law and low of conservation of mass. 

Analytical solutions in one-dimensional problems 
through semi-infinite or finite porous media have been 
presented by several researchers: (Mazaheri et. al. 2013, 
Kumar et. al. 2010, Marino et al. 1974, Singh et al. 2008) 
etc. The objective of this work is to derive an approximate 
analytical solution of ADE with the help of Optimal 
Homotopy Analysis Method (OHAM). In this work, an 
approximate analytical solution of one-dimensional ADE in 
heterogeneous finite aquifer is derived for continuous time 
dependent input source concentration of increasing nature.

2. Problem Formulation
We assume that the solute transport is primarily one-
dimensional. The solutes are assumed to be conservative 
in the unsteady field. Consider an isotopic heterogeneous 
finite aquifer of length L=1 km. 

Let C(x,t) be the contaminant concentration in the 
aquifer, u the groundwater velocity and DL the longitudinal 
dispersion coefficient. Then the partial differential equation 
describing the one dimensional advection and dispersion 
is[ii]
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In heterogeneous medium, porosity changes with position. 
The velocity is non uniform as it depends on porosity. Hence 
the velocity of the flow field transporting the contaminants 
is considered spatially dependent. Let velocity at the origin 
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x = 0 of the domain be u0  which increases to u b0 1( )+  at 
x = L where a real constant b<1 ensures that the change in 
velocity is of small order i.e. the laminar condition of the 
flow is not affected (Kumar et al., 2010) . The expression 
for velocity at any position x may be linearly interpolated as
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Simplifying we have

u x u ax( ) ( )= +0 1  (4)

where a
b
L

=  is a constant less than 1 and serves as a 

heterogeneity parameter. Its different values represent media 
of varying heterogeneity.

Since mechanical dispersion depends on the flow, 
it is expected to increase with increasing flow speed. The 
dispersion parameter is considered to be proportional to the 
square of the velocity.

D D axL = +0
21( )  (5)

where D u0 0
2=α  where α  is known as longitudinal 

dispersivity.  
Using equation (4) and equation (5) in equation (2), 

we obtain 
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which is linear advection-dispersion equation with variable 
coefficients. The solution C(x,t) of this equation represents 
the concentration of contaminants at any position and at 
any time. 

The boundary condition at the origin is of uniform 
nature as defined by many researchers. It means that the input 
concentration at the origin of the medium (water bodies 
on the surface, groundwater level) and hence its source of 
pollution on the earth surface remains uniform at all times. 
But this is not the real situation at all times. Actually, the 
pollution at the source and so the input will increase with 
time due to increasing human activities on the surface. So we 
have considered the inlet boundary condition as

C t t t( , ) ,0 0= >  (7)

The concentration change is very negligible at the other 
end L=1 km of the aquifer. So the solute transport may 
not be affected at the other end of the aquifer. Hence we 
prescribe the outlet boundary condition as no flux boundary 
condition. i.e.
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We solve equation (6) with boundary conditions equation 
(7) and equation (8) using optimal homotopy analysis 
method.

3. Solution of the Problem Using OHAM
To solve the problem by OHAM, we choose the initial guess 
of the solution C(x,t) as 

C x t t e xex
0
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which satisfies boundary conditions equation (7) and 
equation (8). The linear operator is selected as 
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satisfying the property
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where 0 1≤ ≤q  is the embedding parameter. 
Further according to equation (6), the other operator 

is defined as
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Let c0 denote a nonzero auxiliary parameter. According to 
Liao[iii], the zeroth order deformation equation is

(1 ) [ ( , ; ) ( , )]= ( , ) [ ( , ; )]0 0− −q x t q C x t c qH x t x t qL φ φN  (13)

where H x t( , )  is non-zero auxiliary function and φ( , ; )x t q  
is an unknown function. 
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Clearly, when q = 0  and q = 1 , we have from equation 
(11) and equation (13), 

φ( , ;0) = ( , )0x t C x t  (14)                                                      

and φ( , ;1) = ( , )x t C x t   (15)

Hence as  q increases from 0 to 1, the solution φ( , ; )x t q  
deforms from the initial choice C x t0( , )  to the exact solution 
C x t( , )  of equation (6). The determination of φ( , ; )x t q  
depends on the proper choices of the operator L, the initial 
choice C x t0( , )  and the parameter c0 . We assume that all of 
them are properly chosen, the Maclaurin series 
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exists and converges at q = 1 . Hence we have the homotopy 
series solution
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Differentiating equation (13) m times with respect to q and 
then dividing them by m! and then taking q = 0 , we obtain 
high order deformation equations 
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We assume H x t( , ) 1=  for simplicity. Equations (19) are 
nonhomogeneous linear ordinary differential equations 
with constant coefficients for all m ≥1 . Solving equations 
(19)-(20) for m =1 , we obtain the first order homotopy 
approximation as 
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Similarly the mth order homotopy approximation C x tm ( , )  
can be obtained for successive values of m. The convergence 
of the mth order homotopy approximation depends on the 
proper choice of c0 . The homotopy series solution can then 
be written as 

C x t C x t C x t( , ) = ( , ) ( , )0 1+ + ...  (24)

The solution represents solute or contaminant concentration 
at distance x for any time t whose convergence depends on 
the proper choice of the convergence-control parameter c0 .  
To select proper value of c0 . , we use the discrete squared 

residual at the mth order homotopy approximation denoted 
by Em  and defined by (Liao et al. 2010) as
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As fast the residual Em  decreases, the accuracy of the 
corresponding homotopy approximation increases. At the 
mth order approximation, the corresponding optimal value 
of the convergence-control parameter c0  is given by the 
minimum of Em  corresponding to a nonlinear algebraic 
equation to be solved from    
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This approach for obtaining the optimal value of c0 has been 
used for solving a number of problems for nonlinear ordinary 
and partial differential equations by many researchers (Liao, 

2010, Prajapati et al. 2015, 2016, 2017, Liao et al. 2012, 
2013, vejravelu et al., 2012). We have obtained the solution 
up to 10th order approximation. The optimal value of 0c  
is found by the minimum of E10  using Mathematica. 
Here E10 attains its minimum value 5.23828 10 7× −  at
c0 2 42025= − .  which we can observe in Figure 1 also. We 
take M N= = 50 for finding E10 .

Fig 1 The discrete squared residual at 10th order homotopy approximation

Table 1. The discrete squared residual of governing equation (6) by 
means of c0 2 42025= − . .

Order of approximation m Discrete Squared Residual Em

2 1.24554E-1

4 3.53453E-3

6 2.38709E-4

8 9.68075E-6

10 4.7776E-7

From the Table 1, we can see that the squared residual 
decreases as we increase the order of approximation. So the 
10th order homotopy approximation is accurate.

4. Numerical and Graphical Representation
BVPh, a Mathematica package, is used to obtain numerical 
values of concentration. Table 2 indicates the numerical 
values of the solute concentration
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to obtain numerical values of the solution. 
Figure 2 shows the concentration profiles of the 

contaminant for fixed values of times . Numerical values of 
Table 2 are used for Figure 2. Figure 3 shows the graph of 
concentration for fixed positions. We use numerical values 
of Table 2 for Figure 3 also. 

Table 2. Numerical values of the solute concentration C(x, t).

x t=1 t=1.1 t =1.2 t =1.3 t =1.4 t=1.5 t =1.6 t =1.7

0.0 1.00000 1.10000 1.20000 1.30000 1.40000 1.50000 1.60000 1.70000

0.01 0.96338 1.06334 1.16330 1.26326 1.36322 1.46318 1.56314 1.66310

0.02 0.92713 1.02705 1.12697 1.22689 1.32681 1.42673 1.52665 1.62657

0.03 0.89124 0.99112 1.09100 1.19088 1.29076 1.39064 1.49052 1.59040
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5. Conclusion
The approximate analytical solution of advection-dispersion 
equation with variable coefficients is obtained by optimal 
homotopy analysis method with time-dependent input 
source concentration. The contaminant transport behaves as 

expected i.e. the concentration at a fixed time decreases as the 
distance increases and the concentration at a fixed position 
advances with time. The solution is useful as a preliminary 
predictive tool for simulating the solute migration in aquifer 
due to the release of a time-dependent source.

Fig 2 The spatial distribution of solute concentration for fixed values of times

Fig 3 The temporal distribution of solute concentration for fixed values of distances

0.04 0.85571 0.95555 1.05539 1.15523 1.25507 1.35491 1.45475 1.55459

0.05 0.82054 0.92034 1.02014 1.11995 1.21975 1.31955 1.41935 1.51915

0.06 0.78574 0.88550 0.98526 1.08503 1.18479 1.28455 1.38432 1.48408

0.07 0.75129 0.85102 0.95074 1.05047 1.15019 1.24992 1.34965 1.44937

0.08 0.71721 0.81690 0.91659 1.01628 1.11596 1.21565 1.31534 1.41503

0.09 0.68349 0.78314 0.88280 0.98244 1.08210 1.18175 1.28140 1.38105

0.10 0.65014 0.74975 0.84936 0.94898 1.04859 1.14821 1.24782 1.34743
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