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Abstract The present paper is based on the analysis of an two identical unit 
system wherein initially one unit is in operative state and other is in cold 
standby and total failure of the unit is via partial failure mode. Single repairman 
is always available with the system for any repair of failed unit (partially/
completely). Failure/repair time is considered to be a Geometric distribution. 
Measures of system effectiveness had also been calculated for the system.

Keyword: Geometric distribution, redundant system, discrete random variable.

1. INTRODUCTION

In some situations, discrete failure distributions is appropriate for lifetime 
model [1,2,4] e.g an discrete distribution is accurate for a equipment operating 
in phases and the number of phases observed prior to any failure.

Discrete failure case arises in several situations, e.g.: a) A device is 
monitored only once in any period of time (e.g., hourly, daily, weekly, 
monthly etc.), and the observation is considered to be the number of time 
periods completed successfully, prior to device failure. b) Piece of equipment 
performs in phases and the experimenter successfully observes the number of 
phases, completed prior to failure. 

When the observed values are assumed to be very large i.e. in thousands 
of phases, a continuous distribution is proved to be an adequate model for the 
discrete random variable. However, for small observed values, the continuous 
distribution will not be describing a discrete random variable. 

We see that many practical situations of importance are represented 
with the help of discrete life time models. Similarly, the repair time may be 
considered as discrete random variable as dividing the whole time interval into 
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various small parts of time. Discrete time models are considered by several 
researchers [1, 2]. 

Keeping in view these concept of discrete time modeling, we analyze 
redundant system models [5] having two identical units with geometric failure 
and repair time distribution. In initial stage, one unit is in operative state and 
second one has to be in cold standby model. The two types of failure are total 
failure and partial failure of the unit [3]. 

2. SYSTEM DESCRIPTION AND ASSUMPTION

System is analyzed under the following assumptions:
(i) A system is consisting of two identical units i.e. operative and 

standby. Each unit posses three modes of states: normal (N), partial 
failure (PF) and total failure (F). The standby unit cannot fail.

(ii) System is considered to be in failed state, whether the cause of failure 
is partial or total.

(iii) Failures are self-announcing.
(iv) The failure and repair time distribution are independent having 

geometric distribution with parameter p and r respectively. 
(v) The failure time of all units will be taken as independent random 

variable.
(vi) The system may go to partially failed or totally failed states with 

probability ‘b’ or ‘a’ respectively.

3. NOTATIONS/SYMBOLS FOR STATES OF THE SYSTEMS

 a : Probability of system going to failed state.
 b : Probability of system having partially failed state.

 N0 : Unit having operative/normal mode.
 Ns : Unit having standby/normal mode.

 Fr/Fwr : Unit having failure mode and is repairing/waiting for repair. 
 PFr/PFwr : Unit having partial failure mode and is repairing/waiting for 

repair.

Up States :  S0 ≡ (N0, Ns), S1 ≡(Fr, N0), S2≡ (PFr, N0)

Down State :  S3 ≡ (Fr, Fwr), S4 ≡ (PFr, PFwr), S5 ≡ (Fr, PFwr), S6 ≡ (PFr, Fwr)
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4. TRANSITION PROBABILITIES AND SOJOURN TIMES 
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   (1.1 -1.13)

The probability of steady-state transition from ‘Si
’ to ‘Sj

’ is calculated by using 

Figure 1.1: Transition Diagram
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Pij = lim
t→∞

 Qij

and it is verified that 
P01 + P02 = 1, P11 + P10 + P12 + P15 + P13 = 1, P22 + P20 + P21 + P24 + P26 = 1

P31 = P42 = P52 = P61 = 1

5. MEAN SOJOURN TIMES 

Let T
i
 be assumed to be sojourn time in state S

i
(i = 0, 1, 2) and then, the mean 

sojourn time of S
i
 is calculated by

( )i i
t

P T tµ
∞

=

= >∑
0

so that, µ0 = 
q−

1
1

 µ1 = µ2 = 
qs−

1
1

 µ3 = µ4 = µ5 = µ6 = 
s−

1
1

 (1.14-1.16)

By defining mij in state Si, when system transits into state Sj i.e.

mij = 
t

∞

=
∑

0

t qij(t)

we obtained
m01 + m02 = qµ0 m11 + m10 + m12 + m13 + m15 = (qs) µ1

m22 + m20 + m21 + m24 + m26 = (qs) µ2   m31 = m52 = m42 = m61 (1.17-1.20)

6. MEAN TIME TO SYSTEM FAILURE

Letbe the system probability to work for at least epochs, when initial it starts 
from state 

R0(t) = Z0(t) + q01(t)R1(t−1) + q02(t−1)R2(t−1)

R1(t) = Z1(t) +q10(t−1)R0(t−1) +q11(t−1)R1(t−1) +q12(t−1)R2(t−1)

R2(t) = Z2(t) + q20(t−1)R0(t−1) + q22(t−1)R2(t−1) +q21(t−1)R1(t−1) 
 (1.21– 1.23) 

Taking Geometric Transform on both sides, we get 

R0*(h) = ( )
( )

N h
D h

1

1
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D1(h) = [1− * * * * * *( )][ ( )] ( ) ( ) ( ) ( )q h hq h h q h q h h q h q h− − −2 2
11 22 12 21 01 101 × *[ ( )]hq h− 221

* * * * * *( ) ( ) ( ) ( ) ( ) ( )h q h q h q h h q h q h q h− −2 3
12 20 01 02 10 21 −h2 * * *( ) ( )( ( ))q h q h hq h−02 20 111

N1(h) = * * * * * * *( )[ ( )][ ( )] ( ) ( ) ( ) ( )Z h hq h hq h h q h q h Z h hq h− − − +2
0 11 22 21 12 0 011 1

* * * * * * * *( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( )hq h Z h h q h q h Z h h q h q h Z h− + 2 2
22 1 01 12 2 02 21 11

+ h * * *( )( ( )) ( )q h hq h Z h−02 11 21

Then,
MTSF = N1/D1 (1.24)

where D1 = (1−P11) (1−P22) − P12 P21− P01 P10 (1−P22) − P12 P20 P01− P02 P10P21

− P02P20 (1−P11)

N1 = (1−µ0) [P12 P21− (1−P11) (1−P22)] + (µ1 + P10) (P01(1−P22) + P02P21)

+ [(µ2 + P20) P02(1−P11) + P12 P01]

7. AVAILABILITY ANALYSIS 

Let A
i
(t) be the system probability having up state at epoch 't', when initial it 

starts from state S
i
.

A0(t) = Z0(t) + q01(t−1) A1(t−1) + q02(t−1) A2(t−1)

A1(t) = Z1(t) + q10(t−1) A0(t−1) + q11(t−1) A1(t−1) + q13(t−1) A3(t−1)

+ q15(t−1) A5(t−1) + q12(t−1)A2(t−1)

A2(t) = Z2(t) + q20(t−1) A0(t−1) + q21(t−1) A1(t−1) + q22(t−1) A2(t−1)

+ q24(t−1) A4(t−1) + q26(t−1) A6(t−1)

A3(t) = q31(t−1) A1(t−1)

A4(t) = q42(t−1) A2(t−1)

A5(t) = q52(t−1) A2(t−1)

A6(t) = q61(t−1) A1(t−1) (1.25-1.31)

By taking geometric transformation, and solving above equations we get 

A0*(h) = ( )
( )

N h
D h

2

2
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where 

N2(h) = * * * * * * *( )[( ( ))( ( ))] ( )( ( )) ( ) ( )Z h hq h hq h h q h hq h q h Z h− − − −2
0 11 22 24 11 42 01 1 1

* * * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h q h q h Z h h q h q h q h Z h h q h q h− − −2 3 2
21 12 0 26 12 61 0 31 13

* * * * * * *( ( )). ( ) ( ) ( ) ( ) ( ) ( )hq h Z h h q h q h q h q h h q h− + −4 3
22 0 42 31 24 13 211

* * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))q h q h Z h h q h q h h q h h hq h− + −4
15 52 0 26 15 61 52 221
* * * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q h Z h h q h q h q h Z h h q h q h Z h− +3 2
01 1 24 42 01 1 01 12 2

* * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h q h q h q h Z h h q h q h Z h h q h+ + +3 2 3
01 15 52 2 21 02 1 26

* * * * * * * *( ) ( ) ( ) ( )( ( )) ( ) ( ) ( )q h q h Z h hq h hq h Z h h q h q h+ − − 3
02 61 1 02 11 2 13 311
* *( ) ( )q h Z h02 2

D2(h) = (1−h * * * * * *( ))( ( )) ( ) ( )( ( )) ( )q h hq h h q h q h hq h h q h− − − −2 2
11 22 24 42 11 121 1

* * * * * * *( ) ( ) ( ) ( ) ( ) ( )( ( ))q h h q h q h q h h q h q h hq h h− − − +3 2 4
21 26 12 61 13 31 221
* * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q h q h q h h q h q h q h h q h q h− −3 4
24 13 31 15 21 52 15 26

* * * * * * *( ) ( ) ( )( ( )) ( ) ( ) ( )q h h q h q h hq h h q h q h q h− − +2 4
52 01 10 22 01 10 241
* * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q h h q h q h q h h q h q h q h q h h− − −3 4 3
42 12 01 20 15 01 20 42

* * * * * * * * *( ) ( ). ( ) ( ) ( ) ( ) ( ) ( ) ( )q h q h q h h q h q h q h q h h q h q h− −4 2
02 10 21 02 10 26 61 02 20

* * * * *( ( )) ( ) ( ) ( ) ( )hq h h q h q h q h q h− + 4
11 31 02 13 201

where,
Z0(t) = qt,  Z2(t) = Z1(t) = (qs)t,  Z3(t) = Z4(t) = Z5(t) = Z6(t) = st

Hence, 
* ( )iZ 1 = µi

The availability of steady state system is calculated by 

A0 = lim
t→∞  

A0(t)

Hence, using ‘L’ Hospital Rule, we get

         A0 = −
 

( )
( )

N
D′

2

2

1
1   

(1.32)

where 
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N2(1) = (1 − p22− p24) (µ0(1−p11) + µ1 p01) 

+ (p21 + p26) (µ1 p02−µ0p12) −p15 p21µ0−p13(1−p22) µ0

+ µ2p01 (p12 + p15) + µ2p02(1−p11−p13) + p13p24− p26 p15

and

( )D′2 1  = −[qsµ1 (1−p22− p24− p20p02) + q µ0(p20(p12 + p15) − p10(p24−p22))

 + qsµ2 (1−p11− p13− p01p10) + sµ3[p24(1−p11− p01p10) + p15(p01p20

 + (p21+p26)) + p13(1−p22−p24− p02 p20) + p26 (p12 + p02 p10)]

Now, the system expected uptime at epoch ‘t’ is calculated by

µup(t) = 
t

x=
∑

0

 A0(x)

so that        * * ( )( )up
A hh

h
µ =

−
0

1

8. BUSY PERIOD ANALYSIS

Let be the repair probability i.e busy repair time of any failed unit, when initial 
the system starts from . 
B0(t) = q01(t−1) B1(t−1) + q02(t−1) B2(t−1)

B1(t) = Z1(t) + q10(t−1) A0(t) + q11(t−1) B1(t−1) + q12(t−1) A2(t−1)

+ q13(t−1) B3(t−1) +q15(t−1) A5(t−1)

B2(t) = Z2(t) + q20(t−1) B0(t−1) + q22(t−1) B2(t−1) + q21(t−1) B1(t−1)

+ q24(t−1) B4(t−1) + q26(t−1) B6(t−1)

B3(t) = Z3(t) + q31(t−1) B1(t−1)

B4(t) = Z4(t) + q42(t−1) B2(t−1)

B5(t) = Z5(t) + q52(t−1) B2(t−1)

B6(t) = Z6(t) + q61(t−1) B1(t−1)  (1.33 – 1.39)
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By taking geometric transformation and solving above equations we get

B0*(h) = ( )
( )

N h
D h

3

2

where,
* * * * * * * *( ) ( )( ( )) ( ) ( ) ( ) ( ) ( ) ( )N h hq h hq h h q h q h q h Z h h q h q h= − − +3 2

3 01 22 01 24 42 1 01 121

* * * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Z h h q h q h q h Z h h q h q h q h Z h h+ + +3 3 2
2 01 12 24 4 01 12 26 6

* * * * * * * * *( ) ( )( ( )) ( ) ( ) ( ) ( ) ( ) ( )q h q h hq h Z h h q h q h q h q h Z h h− − +4 2
01 13 22 3 01 13 24 42 31

* * * * * * *

* * *
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( )) ( )
q h q h Z h h q h q h q h Z h

hq h hq h Z h
+
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3
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* * * * * * * *

*
( ) ( )( ( )) ( ) ( ) ( )( ( )) ( )

( )
h q h q h hq h Z h h q h q h hq h Z h

h q h
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−

2 2
02 24 11 4 26 02 11 6

3
02

1 1

* * * * * * *

* * * * *
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
q h q h Z h h q h q h q h Z h

h q h q h q h q h Z h
+

+

3
13 31 2 02 13 21 3

4
02 13 26 31 4

* * * * * * * * * *

*
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
h q h q h q h q h Z h h q h q h q h q h Z h

h q h
+ −

+

4 4
02 13 26 61 3 02 13 26 31 6

3
02

* * * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q h q h Z h h q h q h q h q h Z h+ 4
15 21 3 02 15 26 61 5

Probability of a repair facility busy in repairing failed unit is: 

B0(t) =
 
lim
t→∞  

B0(t)

Hence, using ‘L’Hospital Rule, we get

 B0 = 
( )
( )

N
D

−
′
3

2

1
1

 (1.40)

where

N3(1) = p01(1−p22)+ µ1 (p02 (p21+p26)−p01p24)+ µ2(p01p12−p02(p11+p13−1)) 

+ µ3 {(p26 + p24) (p01 p12 + p02 (1−p11)) + p02 (p21 + p26) (p13 + p15)}
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9. PROFIT FUNCTION ANALYSIS

The profit expected in steady-state is 

 P = C0A0− C1B0 (1.41)

where
C0 / C1: per unit up/down time revenue/expenditure by/on the system. 

10. PARTICULAR CASE

P01 = a,   P02 = b,  P11 = P21= arp
q−1

,  P13 = P26 = aps
qs−1

P10 = P20= rq
qs−1

,  P12= P22 = brp
qs−1

,  P15 = P24 = bps
qs−1

On fixing following numerical values as: 

P =0.1,  r = 0.25,  a = 0.45,  b = 0.55.

The values of different system effectiveness measures are as:
MTSF = 52.33 time units

Availability (A0) = 0.23758

Busy period of analysis of repairman (B0) = 0.754556

Graphical Representation:

Fig. 1.3 reflects the behavior repair rate It is clear that, the increases with 
increasing repair rate. 
Fig. 1.4 reflects the pattern of the profit failure rate for distinct repair rate Profit 
decreases with increasing failure rate and is higher for bigger values of repair 
rate Following observations from the graph are:

(i) For r = 0.5, P > or = or < 0 according as p < or = or > 0.7356. So, 
system is profitable only if, failure rate is less than 0.7356.

(ii) For r = 0.75, P > or = or < 0 according as p < or = or > 0.8098. Thus 
the system is not profitable when > 0.8098.

Hence the companies using such systems can be suggested to purchase only 
those system which do not have failure rates greater than those discussed in 
points (i) to (iii) above in this particular case.



Bhardwaj, N.
Parashar, B.

140

Fig. 1.5 reflects the pattern of the profit w.r.t repair rate for distinct failure rate 
Profit increases with increasing repair rate and is lower for higher values of 
failure rate 

Figures 1.2: reflects the behavior of failure rate It is clear that, the decreases 
with increasing failure rate.

Figure 1.3
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Figure 1.4

Figure 1.5
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CONCLUSIONS

The analysis discussed above shows that the MTSF and the expected up time 
of  used system decreases with increasing the values of rate of partial and total 
failures. For the profit of the system, the analysis stated various cut of points 
of the revenue per unit up time and cost per unit repair of the failed unit to 
enhance the profit of the system. 
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