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Abstract Generalized one parameter group theoretical method is applied to 
study Powell-Eyring and Prandtl-Eyring fluid models for heat transfer in forced 
convection boundary layer flow. The velocity and the temperature variations 
for two dimensional steady incompressible, laminar forced convection flow 
of both fluid modelspast a flat plate is considered. Velocity and temperature 
variation for different values offluid index and physical parameter A,B,α,β 
and Pr are presented graphically. Also, comparison for both fluid models is 
done graphically.

Keywords: Non-Newtonian fluid, Generalized group theoretic method, 
Powell-Eyringmodel, Prandtl-Eyring model, Forced convection.

NOMENCLATURE

A-group parameter
G-group 
U-main stream velocities in x direction 
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a-thermal diffusivity
f-similarity function
n-flow behaviour indices
u-velocity component in X direction 
v-velocity component in Y direction
τ- stress component 
θ - Temperature of fluid
ψ - stream function
η  - independent similarity  variable
α β α α β β, , , ..., , , ...,and 1 7 1 7 - real constants
τ yx -stress component in the direction of x, perpendicular to y
Cp-specific heat at constant pressure
θw- wall temperature of fluid 
PS, QS are real valued and differentiable in their real argument ‘A’.

1. INTRODUCTION

The process of heat transfer through a fluid in the presence of bulk fluid motion 
is called convection. Generally, convection is classified in two ways depending 
on how the fluid motion is started. One is natural convection or free convection 
which is initiated because of buoyancy effect. In natural convection, warmer 
fluid is rising and cooler fluid is falling. Second type is forced convection in 
which fluid is forced to flow by using fan or pump. To study heat transfer 
problem is very important because its wide applications in different industrial 
instrument and some household equipment. 

Observation of literature survey is that most of flow analysis is done for 
Newtonian fluids and limited analysis done for non-Newtonian fluids almost 
up to power law fluid.  Kapur [6], Hansen and Na[1], M. Pakdemirli [11], 
Patel et al [8,9,14] worked on Non -Newtonian fluids almost up to power law 
fluid. Heat transfer in natural convection and forced convection are studied 
by Lin and Lin [5]. He used a similarity solution technique to study different 
cases regarding heat convection problem. Using similarity analysis and finite-
difference method, Na [15], studied non-Newtonian fluid model namely 
Reiner-Philippoff model. Numerical analysis done by Timol and Surati [3] for 
different non-Newtonian fluid model using assumed group method.

Prasad [7] investigated the problem of heat transfer of an incompressible, 
viscous non-Newtonian fluid over a non-isothermal stretching sheet in the 
presence of viscous dissipation and internal heat generation/absorption. Munir 
[12] analysed the Sisko fluid model for two different cases for nonlinear 
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stretching sheet. He is considered forced convection heat transfer problem for    
the sheet with variable temperature and the sheet with variable heat flux. Hayat 
[2] investigate the Powell Eyring model and analysed the effects of convective 
heat and mass transfer.

We observed that most of Similarity analysis done for different non-
Newtonian fluid model by either assuming similarity variable or by assumed 
group of transformation in area of heat transfer. Sutterby fluid models 
considered for similarity analysis by applying general group theoretic method 
by Jain [13]. Boundary layer flow under the influence of transverse magnetic 
field is examined by applying deductive group theoretic method by author. 
Recently, Similarity solution is derived for Sisko fluid using dimensional 
analysis method by Hema [4].

Different non-Newtonian fluid models are defined by arbitrary functional 
relationship between shear-stress and rate of the strain [14,16]. From these 
defined models, most of researcher worked on power law model because of 
simple mathematical relationship between shear-stress and rate of the strain. 
Also, relationship between shear-stress and rate of the strain is derived 
empirically for power law model. Other fluid models are mathematically more 
complex than power law model and governing equations of models are non-
linear partial differential equations. So, it is not easy to solve analytically or 
numerically. Our interest to solve these two more mathematically complex 
models because of two main aspects, first is that the relationship of fluid model 
is derived from kinetic theory of liquids and second these models converts to 
Newtonian fluid model for high and low shear rates [1].

In the present paper, generalized one parameter group theoretical method 
is applied on Powell-Eyring and Prandtl-Eyring fluid models to study heat 
transfer in forced convection boundary layer flow. The velocity and the 
temperature variations for two dimensional steady incompressible, laminar 
forced convection flow of both fluid modelspast a flat plate is considered. 
Velocity and Temperature variations for different values of fluid index 
and physical parameter A, B, α, β and Pr are presented graphically. Also, 
comparison for both fluid models is presented by graph.

2. GOVERNING EQUATION([3])

Present research is based on the following assumption.
1. The fluid is assumed incompressible and viscoelastic.
2. The flow is two-dimensional and steady. 
3. The constant pressure specific heat Cp is assumed to be constant with respect 

to temperature changes. 
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4. The fluids under consideration are of the form in which shearing stress τ yx  
is related to rate of strain by the arbitrary function of the type 

 F u
yyxτ ,∂
∂









= 0  (1)

The governing equations of two dimensional, steady incompressible, laminar 
forced convection flow over a flat plate with a cartesian coordinate system in 
usual notations are:

 ∂
∂
+
∂
∂
=

u
x

v
y

0  (2)

 u u
x

v u
y

U dU
dx y

∂
∂
+
∂
∂
= +

∂
∂

1

ρ
( )Tyx  (3)

 u
x

v
y

a
y

∂
∂
+
∂
∂
=
∂
∂

θ θ θ2

2
 (4)

(Where is thermal diffusivity)
With the boundary conditions:

 u v u U x W0 0 0 0 0 0( )= ( )= ( )= ∞( )= ( ) ∞( )=, � , ,� , �θ θ θ  (5)

Using stream function ψ x y,�( ) , to reduce one dependent variable which 
satisfies equation (2).

 u
y
v

x
=
∂
∂

=−
∂
∂

ψ ψ,  (6)    

The dimensionless basic partial differential equations for low velocity forced 
convection flow of non-Newtonian fluids with stream function ψ can be 
derived as follows:

 ∂
∂
∂
∂ ∂

−
∂
∂
∂
∂
= +

∂
∂

ψ ψ
ρ

τ
y y x x y

U dU
dx y yx

2 2

2

1Ψ Ψ ( )  (7)

 ∂
∂
∂
∂
−
∂
∂
∂
∂
=

∂
∂

ψ θ ψ θ θ
y x x y pr y

1

3

2

2
 (8)

Subject to the boundary conditions;
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y

y x

y
y

U x W

= ⇒
∂
∂
=−
∂
∂
= =

=∞⇒
∂
∂
= ( ) ⇒

0 0 0
ψ ψ

θ

ψ
θ θ

,

,
 (9)

With the stress–strain relation

 F
yyxτ
ψ,∂
∂










=

2

2
0  (10)

Where following non-dimensional quantities used.

 
u u

U
v v

U
Re x x

L
y y

L
Re

U U
U U

Re Ry x
yx

' , ' , ' , ' ,

' , ,

= = = =

= =′′ ′

0 0

0 0
2

3 3

3
τ

τ

ρ
ee U L pr U L

aRe
= =

ρ
µ

0 0,

 (11) 

(Des are dropped for simplicity)

3. GENERALIZED GROUP THEORETIC METHOD 

The method used in this paper is Generalized group theoretic method. Under 
this General group oftransformation, the two independent variables will be 
reduced by one and the boundary value type partial differential equations (7) 
-(10) which has two independent variables and y transform into boundary 
value type ordinary differential equations in only one-independent variable, 
which is called similarity equation.

First, introduced a one-parameter group transformation of the form 

 G

A Q A
P A Q A
P A Q A
P A Q A:

( )

x P x
y y

x x

y y

= ( ) + ( )
= ( ) + ( )
= + ( )
= ( ) + ( )
Ψ ΨΨ Ψ

τ ττ τ

θθ θ
θ θ

θ θ

θ θ

= ( ) +
= ( ) + ( )
= ( ) +







P A Q A
P A Q A

U P A U Q AU

( )

( )
W W

U

w w







 (12)
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Where, A is the parameter of the transformation. PS And QS are real valued and 
at least differentiable in their real argument ‘A’.

Equations (7) and (8) remain invariant under group of transformations 
defined by G in equation (12)

 

∂
∂
∂
∂ ∂

−
∂
∂
∂
∂
− −

∂
∂
{ }

= ( ) ∂
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∂
∂ ∂

−
∂
∂

Ψ Ψ Ψ Ψ

Ψ
y y x x y

d
dx y

A
y y x x
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2 2

2

2
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∂
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
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∂
∂
( )


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

2

2

Ψ
y

U dU
dx y yxτ

 (13)
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∂
∂
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∂
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∂
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∂
−
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Ψ Ψ
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h A
y x x y pr

θ θ θ

ψ θ ψ θ θ

1

3
1

3

2

2

2

∂∂









y

2

 (14)

 F
y

P Q P
Py

τ ττ+
∂
∂










=,

( )

Ψ Ψ
2

2

2
0  (15)

The invariance of equations(13),(14), (15) gives:

 
P

P P

P P
P

A
y

U

x y

Ψ( )
( )








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2
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( ) τ

λ  (16)

 
P P

P
P
Px y y

Ψ θ θ

P
h A= = ( )

( )2  (17)

 P P
Py

τ = =
Ψ

( )2
1  (18)

The invariance of boundary conditions gives:

 Q A Q Q Q Qy ( )= = = ==θ θ τW U 0  (19)

From solving above equations we get
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 P P P P P P P P¨ y x y U y= = = = =( ) , ( ) , , ,2 3 1P Wθ θ τ  (20)

Here, we get the one-parameter group G, which transforms the differential 
equation (7) -(10) with the auxiliary conditions invariantly.
The group G is of the following form

 G

A Q A

P A y

P A Q A

P A

y

y

:
( )

x P x

y

y x

W

=( ) ( ) + ( )
= ( )

=( ) + ( )
=

= ( )
=

3

2
Ψ Ψ Ψ

τ τ
θ θ
θ

θ

PP A
U P A Uy

θ θ( )
= ( )











W

 (21)

4. THE SET OF ABSOLUTE INVARIANTS FOR DEPENDENT AND 
INDEPENDENT VARIABLES

Now, we obtain a set of absolute invariants for dependent and 
independent variables. Using these new variables original problem will 
convert into an ordinary differential equation in new similarity variable 
via one parameter general group theoretic method. The statement of a 
basic theorem in group theory [10]; is that: “A function is an absolute 
invariant of a one-parameter group if it satisfies the following first-order 
linear differential equation”:

 i i i i
i

S g
S=∑ +( ) ∂
∂
=

1

7
0α β  (22)

Where, S x yi W= , ; , , , ,ψ τ θ θU

 α βi

s

i

sP
A
A Q

A
A i

i i

=
∂
∂
( ) =

∂
∂
( ) =0 0 1 2 7, , , ,...  (23)

Where, A0 denotes the value of parameter which yield the identity element of 
the group. By considering
x x x y y y y y y W1 2 1 2 3 4 5= = = = = = =, , , , , ,ψ τ θ θU equation (22) becomes
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α β α β

α β α β

1 1 1
1

2 2 2
2

3 1 3
1

4 2 4

x g
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x g
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y g
y

+( ) ∂
∂
+ +( ) ∂

∂

+ +( ) ∂
∂
+ +( ) ∂

∂ 22

5 3 5
3

6 4 6
4

7 5 7
5

0

+ +( ) ∂
∂
+ +( ) ∂

∂

+ +( ) ∂
∂
=

α β α β

α β

y g
y

y g
y

y g
y

� � � �

 (24)

Using the definitions of α βi i i, ; , ,... .=( )1 2 7  from Equations (19) and (20), we 
obtain and the relations between αi 's & βi  as follows

 α α α α α α α β β β β β1 2 3 4 5 6 7 2 4 5 6 73
3

2
0 0= = = = = = = = = =, , ,  (25)

Now solving this equation (23) and using above relations of α βi i, , we obtain 
independent and dependent similarity variables as follows

 

η
λ

λ
β
α

η
γ

λ
γ

=
+( )

=










( )= +
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=

y where,

F where

x

x

1

3

1

1

1 2

3

Ψ , ββ
α

η
λ

η τ η
θ

λ

3

1

2 1

3

3 4










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( )= ( )=
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F U F F �whm

x x
yx, , eere
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,m

x
xW

m

=










( )=
+( )

= +( )




α
α

η
θ

λ
λ

6

1

5

1

3






 (26)

5. THE REDUCTION TO AN ORDINARY DIFFERENTIAL 
EQUATION

Independent and dependent absolute invariants are used to convert equations 
(13) -(15) into the following non-linear ordinary differential equations

 F1

2

1 1 32 1 3' "( ) ( )− ( ) ( )= + ( )η η η ηF F F '  (27)

 F pr mF F F F4 4 1 1 43 2 0" ' 'η η η η η( )− ( ) ( )− ( ) ( )( )=  (28)
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 F F F3 1 0, "( )=  (29)

Subject to the boundary conditions

 η η η η= ⇒ ( )= ( )= ( )=0 0 0 01 1 4F F ' F, ,  (30)

 η η η=∞⇒ ( )= ( )=F ' F1 41 1,  (31)

5. POWELL EYRING MODEL

The stress-strain relationship for Powell-Eyring model is:

 τ µyx
u
y B C

u
y

=
∂
∂
+

∂
∂











−1 11sinh  (32)     

Where B and C are constants characteristic of the model.  Using the non-
dimensional quantities given by equation (11) and stream function ψ and 
similarity variables into equation (32), the Powell-Eyring model transform 
into following equation

 ρ
η

µ
η η

U
Re
F U

L
ReF

B C
U
L

Re F0
2

0
1

1 0
1

3

3

1 1
3( )= ( )+ ( )







−" sinh / "   (33)

Differentiating and simplifying it we get

 F
F F

F
1

1

2

3

1

2

3 1

3 1

'''
( " '

" ]
η

α β η η

α β η
( )=

+ ( )( ) ( )

+ + ( )( )
 (34)

By taking BC U
LC

α µ β
ρ
µ

= =










3
3

0
3

2
,

Above equation (27)-(29) reduced into

 
α β η η η η

β η

( ( )

( "

" "'1 2 1

3 1

1

2

1
2

1 1

1

+ ( )( ) ( )− ( ) ( )−





= + + ( )(

F F F F

F ))










( )

2

1F ''' η
 (35)

 F pr mF F F F4 4 1 1 43 2 0" ( ' 'η η η η η( )− ( ) ( )− ( ) ( )=  (36)
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With boundary conditions

 η η η η= ⇒ ( )= ( )= ( )=0 0 0 01 1 4F F F, ,'  (37)

 η η η=∞⇒ ( )= ( )=F ' F1 41 1,  (38)

6. PRANDTL-EYRING MODEL

The stress-strain relationship for Prandtl-Eyring model is:

 τ yx B
C
u
y

=
∂
∂











−sinh 1 1
 (39)

Where B and C are constants characteristic of the model. Using the 
non-dimensional quantities given by equation (11) and stream function 
ψ defining by equation (6) into equation (39) and simplifying, the above 
model becomes

 ρ
η η

U
Re
F B

C
U
L

Re F0
2

3
1 0

1

3

1
3( )= ( )









−sinh / "  (40)

Differentiating it we get

 
F

F F

B

1

1

2

3

0
3

2

1

3 3

'''

'

( ' " '
η

β η η

α

β
ρ
µ

α
µ

( )=
+ ( )( ) ( )

= =









'

' U
LC C



 (41)

Above equation (27)-(29) reduced into

 ( ' ( )" "' '''1 2 1 31

2

1
2

1 1 1+ ( )( ) ( )− ( ) ( )−



 = ( )β η η η η α ηF F F F F'  (42)

 F pr mF F F F4 4 1 1 43 2 0" ' 'η η η η η( )− ( ) ( )− ( ) ( )( )=  (43)
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Figure 1: velocity profile for Powell-Eyring and Prandtl-Eyring model.

Figure 2: Temperature profile for Powell-Eyring and Prandtl-Eyring 
model.
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Figure 3: Temperature profile for Powell-Eyring model for different 
values of m.

Figure 4: Temperature profile for Prandtl-Eyring model for different 
Prandtl number.
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Figure 5: Temperature profile for Powell-Eyring model for different 
Prandtl number.

 η η η η= ⇒ ( )= ( )= ( )=0 0 0 01 1 4F F F, ' ,  (44)

  η η η=∞⇒ ( )= ( )=F ' F1 41 1,  (45)

(F1 = f and F4 = g, pr = p, PO = Powell-Eyring, PE=Prandtl-Eyring in 
graph)

CONCLUSION

In the present investigation, the generalized group theoretic method is applied 
to the governing equations of forced convection flow over a flat plate for a 
Powell Eyring model and Prandtl Eyring model to derive the proper similarity 
transformation. The obtained non-linear ordinary differential equations 
(35),(36),(42) and (43) with the boundary conditions (37),(38), (44) and 
(45) are solved numerically by Maple ode solver. Figures 1 and 2 gives the 
influence of parameter  on Temperature profile and velocity profile. Figures 3 
and 4 gives the influence of parameter β on velocity profile and temperature 
profile. Figure 5 gives the temperature profile for Powell-Eyring model for 
different Prandtl number. As the Prandtl number is increased there is a rapid 
increase in temperature in the initial stage.
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The main advantage of present analysis is that any non linear boundary 
value type partial differential equation satisfying Group invariance condition 
can be transform into boundary value type ordinary differential equation. 
The model considered for analysis is Powell – Eyring. It is hoped that this 
model represent a wide cross section of fluids encountered in many process 
industries. The stress-strain relationship for different type of visco-elastic 
fluids and similarity equations using these relationships will be helpful to 
many researchers and engineers for further research.
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