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Abstract In this paper, we introduce almost generalized (a, y)-contractions 
with rational expression type mappings and establish the existence of fixed 
points for such mappings in complete partially ordered metric spaces. Further, 
we define `Condition (H)’ and prove the existence of unique fixed point under 
the additional assumption `Condition (H)’. Our results generalize the results 
of Arshad, Karapinar and Ahmad [1] and Harjani, Lopez and Sadarangani [2].
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1. INTRODUCTION

 Generalization of contraction conditions and proving the existence of 
fixed points is an interesting aspect. Recently Samet, Vetro and Vetro [4] 
introduced a new concept namely ( , )α ψ -contraction mappings which 
generalize contraction mappings and proved the existence of fixed points of 
such mappings in metric space setting. After that Karapinar and Samet [5] 
introduced generalized ( , )α ψ -contraction mappings and proved fixed point 
results and its extension to partially ordered metric spaces can be found in 
[6]. In this direction, we introduce almost generalized ( , )α ψ -contractions 
with rational expression type mappings and establish the existence of fixed 
points for such mappings in complete partially ordered metric spaces. Further, 
we define ‘Condition (H)’ and prove the uniqueness of fixed point under the 
additional assumption ‘Condition (H)’. Our results generalize the results of 
Arshad, Karapinar and Ahmad [1] and Harjani, Lopez and Sadarangani [2].
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In the following, Ψ  denotes the family of non-decreasing functions 
:[ , ) [ , )ψ ∞ → ∞0 0 such that ψ  is continuous on [ , )∞0 and ( )n

n

tψ
∞

=

<+∞∑
1

for each t > 0, where nψ is the nth iterate of ψ .
Remark 1.1. Any function ψ∈Ψ satisfies lim ( )n

n
tψ

→∞
= 0 and ( )t tψ < for any 

t > 0.

Definition 1.2. [4] Let ( , )X d be a metric space, :T X X→ and 
: [ , )X Xα × → ∞0 . We say that T  is α -admissible, if ,x y X∈ ,
( , ) ( , ) .x y Tx Tyα α≥ ⇒ ≥1 1  (1.2.1)

Definition 1.3. [4] Let ( , )X d be a metric space and :T X X→ be a selfmap 
of X . If there exist two functions : [ , )X Xα × → ∞0 and ψ∈Ψ such that 

( , ) ( , ) ( ( , ))x y d Tx Ty d x yα ψ≤ for all ,x y X∈ , then we say that T  is a ( , )α ψ
-contraction mapping.

Remark 1.4.If :T X X→ satisfies the Banach contraction principle, then 
T  is an ( , )α ψ -contraction mapping, where ( , )x yα =1for all ,x y X∈ and 

( )t ktψ = for all t≥ 0 and some [ , )k ∈ 0 1 .

Theorem 1.5. [4] Let ( , )X d be a complete metric space and :T X X→ be an 
( , )α ψ -contraction mapping. Suppose that

(i) T  is α -admissible;

(ii) there exists x X∈0 such that ( , )x Tx ≥0 0 ; and

(iii) T is continuous.

Then there exists u X∈ such that .Tu u=

 In 1977, Jaggi [3] introduced a new concept namely ‘rational type 
contraction mappings’ and proved the existence of fixed points of such 
mappings.
Theorem 1.6. [3] Let T  be a continuous self-map defined on a complete 
metric space ( , )X d . Suppose that T  satisfies the following condition: There 
exist , [ , )α β ∈ 0 1 with α β+ <1 such that

( , ) ( , )( , ) ( , )
( , )

d x Tx d y Tyd Tx Ty d x y
d x y

α β≤ + for all , ,x y X x y∈ ≠ . (1.6.1) 
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Then T  has a fixed point in X .
Here we note that a mapping :T X X→ , X a metric space that satisfies (1.6.1) 
is called a Jaggi contraction map on X.
Definition 1.7. [5]Let ( , )X d be a metric space and :T X X→ be a selfmap 
of X .
If there exist two functions : [ , )X Xα × → ∞0 and ψ∈Ψ  such that

( , ) ( ( ,) )( , )d Tx Ty M yx xy ψα ≤ for all ,x y X∈ , where

( , ) ( , ) ( , ) ( , )( , ) max{ ( , ), , }d x Tx d y Ty d x Ty d y TxM x y d x y + +
=

2 2
,

thenwe say that T  is a generalized ( , )α ψ -contraction mapping.

Theorem 1.8. [5]Let ( , )X d be a complete metric space and :T X X→ be a 
generalized ( , )α ψ -contraction mapping. Suppose that

(i) T  is α -admissible;

(ii) there exists Xx ∈0  such that ( , )x Txα ≥0 0 1; and

(iii) T is continuous.

Then there exists u X∈ such that Tu u= .

Harjani, Lopez and Sadarangani [2] extended Theorem 1.6 to the context of 
partially ordered complete metric space.
Theorem 1.9. [2] Let ( ),X   be a partially ordered set and suppose that there is 
a metric d on X  such that ( , )X d is a complete metric space. Let :T X X→
be a non-decreasing mapping such that

 

( , ) ( , )( , ) ( , )
( , )

d x Tx d y Tyd Tx Ty d x y
d x y

α β≤ +
 

(1.9.1)

for all ,x y X∈ with x y , x y≠ where ,α β≤ <0 1  with α β+ <1 .
Also, assume either

(i) T  is continuous; (or)

(ii) If a non-decreasing sequence { }nx in X  is such that nx x→ as n→∞
then sup{ }.nx x=

If there exists x X∈0 such that x Tx0 0 , then T  has a fixed point.
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A map T  that satisfies the inequality (1.9.1) is called Jaggi contraction map in 
partially ordered metric spaces.

In 2013, Arshad, Karapinar and Ahmad [1] extended Theorem 1.6 to 
almost Jaggi contraction type mappings in partially ordered metric spaces.

Definition 1.10. [1] Let ( , , )X d   be a partially ordered metric space. A 
selfmappingT on X is called an almost Jaggi contraction if it satisfies the 
following condition: There exist , [ , )α β ∈ 0 1 with α β+ <1and L≥ 0 such 
that,

 

( , ) ( , )( , ) ( , )
( , )

min{ ( , ), ( , ), ( , )}

d x Tx d y Tyd Tx Ty d x y
d x y

L d x Tx d x Ty d y Tx

α β≤ +

+
 (1.10.1)

for any distinct ,x y X∈ with x y .

Theorem 1.11. [1] Let ( , , )X d   be a complete partially ordered metric 
space. Suppose that a selfmap :T X X→ is a continuous and non-decreasing 
mapping that satisfies the following inequality : there exist , [ , )α β ∈ 0 1  with 
α β+ <1  and L≥ 0  such that

( , ) ( , )( , ) ( , ) min{ ( , ), ( , )}
( , )

d x Tx d y Tyd Tx Ty d x y L d x Ty d y Tx
d x y

α β≤ + +  (1.11.1)

for all ,x y X∈  with x y≠ and x y . Suppose there exists x X∈0 with 
x Tx0 0 . Then T  has a unique fixed point.

Remark 1.12:Since every almost Jaggi contraction satisfies the inequality 
(1.11.1), it follows that the conclusion of Theorem 1.11 is valid under the 
replacement of condition (1.11.1) by almost Jaggi contraction in Theorem 1.11.

In the following, we introduce almost generalized ( , )α ψ -contractions 
with rational expressions in complete partially ordered metric spaces.

Definition 1.13. Let ( ),X   be a partially ordered metric space and suppose 
that :T X X→ be a mapping. If there exist two functions : [ , )X Xα × → ∞0
and ψ∈Ψ such that

 ( , ) ( ( ,( , ) )) . ( , )d Tx Ty x yy L x yxα ψ≤ Μ + Ν , where (1.13.1)
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( , ) ( , ) ( , ) ( , ) ( , ) ( , )max{ ( , ), , , ,
( , ) ( , ) ( , )

( , ) ( , ) ( , )}
( , )

                             0  

,

 

d x Tx d y Ty d x Ty d y Tx d y Ty d x Tyd x y
d x y d x y d x y

x y d x Tx d x Ty if x
d x y

if x

y y

y

x

= ≠

Μ

=

 



and ( , ) min{ ( , ), ( , ), ( , )}x y d x Tx d x Ty d y TxΝ = , ,x y X∈ with x y , then we 
say that T  is an almost generalized ( , )α ψ -contraction map with rational 
expressions.
Note: Clearly, a map T that satisfies (1.9.1) with α β+ <1also satisfies 
the inequality (1.13.1) with ( , )x yα =1  for all ,x y X∈ , L= 0 and 

( ) ( ) ,t t tψ α β= + ≥ 0 so that T  is an almost generalized ( , )α ψ -contraction 
map with rational expressions. But, the following example suggests that its 
converse need not be true.
Example 1.14. Let { , , , , }X = 0 1 2 3 4 with the usual metric. We define a partial 
order   on X as follows,  := {(0,0), (1,1), (2, 2), (3,3), (4, 4), (0, 2), (0,3), (0, 
4), (1, 2), (1,3), (1, 4), (2,3), (2, 4), (3, 4)}. Let A = {(0,0), (1,1), (2, 2), (3,3), 
(4, 4), (0,1), (1,0), (0, 2), (2,0), (2,3), (3, 4), (4,3)} and B = {(3,2),(1,2),(2,1),(
0,4),(4,0),(0,3),(3,0),(1,3),(3,1),(1,4),(4,1),(2,4),(4,2)}. We define :T X X→
by T0 = T1 = 0,T2 = 3 and T3 = T4 = 4 . We define : [ , )X Xα × → ∞0  by 

( , ) ( , )

( , )

ifx x y A

if x y
y

B
α

=
∈

∈



3
2
0

 and :[0, ) [0, )ψ ∞ → ∞ by (t)= tψ
5
6

.

Case (i): x= 2 and y= 0 .

In this case, ( , )d T T =2 0 3 , ( , )Μ =2 0 3  and ( , )Ν =2 0 1 .

( , ) ( , )

( ) . ( ( , )) . ( , )

( ( , )) . ( , )

( , ) ( , )x y d Tx Ty d T T

L L

x y L x y

ψ ψ

ψ

α α=

= ≤ + = Μ + Ν

= Μ + Ν

2 0
9 3 1 2 0 2 0
2

2 0

holds with L= 3 . 
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Case (ii): x= 2 and y= 3 .

In this case, ( , )d T T =2 3 1 , ( , )Μ =2 3 2 and ( , )Ν =2 3 0 .

( , ) ( , )

( ) . ( ( , )) . ( , )

( ( , )) . ( , )

( , ) ( , )x y d Tx Ty d T T

L L

x y L x y

ψ ψ

ψ

α α=

= ≤ + = Μ + Ν

= Μ + Ν

2 3
3 2 0 2 3 2 3
2

2 3

holds for any L≥ 0 . If ,x y B∈ then the inequality (1.13.1) holds trivially.
Hence, from case (i) and case (ii), we choose L= 3 , so that T is an almost 
generalized ( , )α ψ -contraction map with rational expressions with L = 3.

Also we observe that the inequality (1.10.1) fails to hold.

For, by choosing x= 2 and y= 3 we have

( ) ( )( , )
( , ) ( , ) ( , ) .min{ ( , ), ( , )}

( , )

.d T T
d T d T

L

d L d T d T
d

α β

α β+ + <

=

=

+ +

12 3 1
2 2 3 3 2 3 2 3 3 2

2

1 0 1

3



i.e., T  is not an almost Jaggi contraction map.
Further, we observe that the inequality (1.9.1) also fails to hold.
For, when ( , ) ( , )x y = 2 0 we have

( , ) ( , )( , ) ( , )
( , )

( , ) ( , ) ( , )
( , )

( ) ( ) d T d Td T T d
d

d x Tx d y Ty d x y
d x y

α α β

α

β

β

= +

=

+ ≤

+

2 2 0 02 0 3 2 0
2 0

0 2

.

This shows that the inequality (1.9.1) fails to hold so that T is not a 
Jaggicontration map.

Thus we conclude that the class of almost generalized ( , )α ψ -contraction 
maps with rational expressions is more general than the class of almost Jaggi 
contraction maps and the class of all Jaggi contraction maps also. 

 In Section 2, we prove the existence of fixed points of almost generalized 
( , )α ψ -contraction maps with rational expressions. Further, we obtain the 
uniqueness of fixed point under an additional assumption ‘Condition (H)’. In 
Section 3, we provide examples.
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2. MAIN RESULTS

Theorem 2.1. Let ( ),X  be a partially ordered set and suppose that there is a 
metric d  on X  such that ( , )X d  is a complete metric space. Let :T X X→
be a non-decreasing mapping. Suppose that there exist two functions 

: [ , )X Xα × → ∞0 and ψ∈Ψ such that T is an almost generalized ( , )α ψ

-contraction map with rational expressions. Also, assume that

(i) T is α -admissible;

(ii) there exists x X∈0 such that ( , )x Txα ≥0 0 1with x Tx0 0 ; either

(iii) T  is continuous (or)

(iv) if { nx } is a non-decreasing sequence in X  such that nx x→ as 
n→∞ then sup{ }nx x= ; and also ( , )x xα ≥0 1and ( , )x Txα ≥1

Then T  has a fixed point in X .

Proof: By (ii), we have x X∈0 be such that ( , )x Txα ≥0 0 1.

We define the sequence{ }nx in X  by n nx Tx+ =1 for , , ...n= 0 1 2 . (2.1.1)

If n nx x+ =1 for some n , then nx is a fixed point of T .

Hence w. l. g. we assume that n nx x+ ≠1 for all n .

We have ( , ) ( , )x x x Txα α= ≥0 1 0 0 1 and since T  is α -admissible, we have

 ( , ) ( , )Tx Tx x xα α= ≥0 1 1 2 1 . (2.1.2)

On continuing this process, we have

 ( , )n nx xα + ≥1 1for all n≥ 0 . (2.1.3)

Since T is non-decreasing and x Tx0 0 = x1 , we have x Tx Tx x= =1 0 1 2 .

On continuing this process, we have n nx x +1  for all n≥ 0 . (2.1.4)

By using (1.13.1), (2.1.3) and (2.1.4), we have



Babu, GVR
Sarma, KKM
Kumari, VA

108

, ,
, ,

, , , ,
, ,

, ,
,

( ) ( )
( ) ( )

( ) ( ) ( ) ( )(max{ ,
( ) ( )

( ) ( ), ,
( )

( ) ( )( ), })
( )

m

, ,,
,

n n n n

n n n n

n n n n n n n n

n n n n

n n n n

n n

n n n n
n n

n n

d d T
d T

d d d d
d d

d d
d

x x x Tx
x x x Tx

x Tx x Tx x Tx x Tx
x x x x

x Tx x Tx
x x

x Tx x Txx x d dd
d x x

L

α

ψ

+ −

− −

− − − −

− −

− − −

−

−
−

−

=
≤

≤

+

1 1

1 1

1 1 1 1

1 1

1 1 1

1

1
1

1

, , ,
, ,

,
,

, ,

in{ ( ), ( ), ( )}
( ) ( )

(max{ ( ), ,
( )

( ) ( ) ( ) ( ), ,
( ) ( )

( ) ( )
}

, ,
, ,

, ,
,

)
( )

min{ ( ),, ,(

n n n n n n

n n n n
n n

n n

n n n n n n n n

n n n n

n n n n

n n

n n n n

x Tx x Tx x Tx
x x x x

x x
x x

x x x x x x x x
x x x x

x x

d d d
d d

d
d

d d d d
d d

d d
d

x x
x x

x x x xL d d

ψ

− −

+ −
−

−

− + −

− −

+

−

+

≤

+

1 1

1 1
1

1

1 1 1

1 1

1

1

1 ), ( )}
(max{ ( ), (

,
)}., ,

n n

n n n n

d
d

x x
x x xd xψ

− +

− +=
1 1

1 1  (2.1.5)

Now, if max{ ( ), (, , )}n n n nx x xd xd − +1 1 = ,( )n nx xd +1 then we have

,( )n nx xd +1 ≤ ,( ( ))n nx xdψ +1 < ( ),,n nx xd +1

a contradiction.
Hence, from (2.1.5) we have,

max{ ( ), (, , )}n n n nx x xd xd − +1 1 = ,( )n nx xd −1 so that

( ) ( (, ), )n n n nd dx x x xψ+ −≤1 1 for all n ≥ 1. Hence by induction, it follows that

( ) ( ( ), , )n
n nd x xdx xψ+ ≤1 1 0 . (2.1.6)

From (2.1.6) and using triangular inequality, for all k ≥ 1, we have

( ) ( ) ( ) .... (, )

(

, , ,

,

,

)

( ( )) as n .

n k

p n

n

p n

n n k n n n n n k n k

p p

x x x x x x xd d d d

x

d

x

x

x

d

xψ

+ + + + + − +
+ −

=
+∞

=

+

≤ + + +

=

≤ → →∞

∑

∑

1
1 1 2 1

1

1 0 0
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This implies that { }nx is a Cauchy sequence in X .

Since ( ),X d is complete, there exists z X∈ such that

 
lim .nn

x z
→∞

=  (2.1.7)

First we assume thatT  is continuous. In this case, from (2.1.1), we obtain that

lim limn nn n
z x Tx Tz+→∞ →∞
= = =1 .

Hence z  is a fixed point of T .

Now, suppose that the condition (iv) holds. Since { }nx is a non-decreasing 
sequence and nx x→ we have sup{ }nx x= .

Particularly nx x for all n . Since T  is non-decreasing, we have nTx xT
for all n . 

i.e., nx xT+1  for all n . 

Moreover, n nx x Tx+1  for all n and sup{ }nx x= , we get x xT .

 Let us now consider the sequence { }ny  that is constructed as follows: 

, n ny x y Ty+= =0 1 , , , ...n= 0 1 2 .

Then y Ty0 0  and by condition (iv), we have ( , )x xα ≥0 1and ( , )x xα ≥1 . i.e., 

( , )x yα ≥0 0 1and ( , )y Tyα ≥0 0 1 . Since T  is non-decreasing, we obtain that 

{ }ny is a non-decreasing sequence and { }ny is cauchy (similar to the argument 

to show{ }nx is cauchy) ny y→ (say), y X∈ . Again, by the first part of the 

condition (iv), we have sup{ }ny y= . Since n nx x y Tx Ty y y= =0 0   

for all n . Now ( , )x yα ≥0 0 1 implies ( , ) ( , )Tx Ty x yα α= ≥0 0 1 1 1 ,

( , ) ( , )Tx Ty x yα α= ≥1 1 2 2 1 .

On continuing this process, we have ( , )n nx yα + + ≥1 1 1, for , , ...n= 0 1 2 .

Suppose that x y≠ .Now from (1.13.1), we have
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( ) ( )
( ) ( )

( ) (

, ,
, ,

, , , ,,
, ,

, , , ,

) ( ) ( )(max{ ( ), , ,
( ) ( )

( ) ( ) ( ) ( ),  })
( ) ( )

min{ ( ),
, ,

( ),, , ( ,

n n n n

n n n n

n n n n n n n n
n n

n n n n

n n n n n n n n

n n n n

n n n n n

x y x Ty
x y x Ty

x Tx y Ty x Ty y Tx

d d T
d T

d d d dd
d d

d d d d
d d

L d

x y
x y x y

y Ty x Ty x Tx x Ty
x

d
y x y
x Tx x y TdT y

α

ψ

+ + =
≤

≤

+

1 1

, , , ,
,

, ,
, ,

,
, ,

,
, ,

)}
( ) ( ) ( ) ( )

(max{ ( ), , ,
( ) ( )

( ) ( )
,

( )
( ) ( )

})
( )

min{ ( ), ( ), ( ), }.

n

n n n n n n n n
n n

n n n n

n n n n

n n

n n n n

n n

n n n n n n

d d d d
d

d d
d d

x
x x y y x y y x

x y
x y x y

y y x y
x y

x x x y
x y

x x x y y

d
d d

d
L d xd d

ψ + + + +

+ +

+ +

+ + +

≤

+

1 1 1 1

1 1

1 1

1 1 1

On letting n→∞we have

( ) ( ) ( ) ( ) ( ) ( )( , ) (max{ ( ), , , ,
( ) ( ) ( )

( ) ( )}) min{ ( ), ( ), ( )}
( )

(max{ ( ), , ( ), ,

, , , , , ,,
, , ,

, , , , ,
,

}) .
( ( )) ( )

, ,
, , ,

x x y y x y y x y y x yx y
x y x y x y

x x x y

d d d d d dd x y d
d d d

d x x x y y x
x y

x y

d L d d d
d

d d L
d

x
x y x yd

y

ψ

ψ
ψ

≤

+

= +
= <

0 0 0 0

a contradiction.

Hence x y= , and we have .nx Tx y y y x= =0  

 Therefore x  is a fixed point of T .

Corollary 2.2.Let ( ),X  be a partially ordered set and suppose that 
there is a metric d  on X  such that ( , )X d is a complete metric space. Let 

:T X X→ be a non-decreasing mapping. Suppose that there exists a function 
: [ , )X Xα × → ∞0 and constant [ , )k ∈ 0 1 and L≥ 0 such that

( , ) ( , ) . (( )) ,, d Tx Ty k y x yy Lx xα ≤ Μ + Ν  (2.2.1) for all ,x y X∈  with 

,x y x y≠ . Also, assume that
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(i) T  is α -admissible;

(ii) there exists x X∈0 such that ( , )x Txα ≥0 0 1with x Tx0 0 ; either

(iii) T  is continuous (or)

(iv ){ }nx is a non-decreasing sequence in X such that nx x→ as n→∞  then 

sup{ }nx x= ; and also ( , )x xα ≥0 1and ( , )x Txα ≥1 . 

Then T  has a fixed point in X.

Proof:The conclusion of this corollary follows by taking ( ) ,t kt tψ = ≥ 0  in 
Theorem 2.1.
Remark 2.3. (i) Theorem 1.9 follows as a corollary to Corollary 2.2, since 
the inequality (1.9.1) implies the inequality (2.2.1) with k α β= + <1 ; 

( , )x yα =1for all ,x y X∈ and L= 0 . Hence Theorem 1.9 is a corollary to 
Theorem 2.1. 
(ii) Theorem 1.11 follows as a corollary to Corollary 2.2, since the inequality 
(1.11.1) implies the inequality (2.2.1) with k α β= + <1 ; and ( , )x yα =1for 
all ,x y X∈ .
Now we prove the uniqueness of fixed point of T  under ‘condition (H)’ and 
it is the following:
Condition (H): For all ,x y X∈  there exists z X∈ such that x z and y z , 

( , )x zα ≥1and ( , )y zα ≥1.

Theorem 2.4.Let ( ),X  be partially ordered set and suppose that there is a 
metric d on X  such that ( , )X d  is a complete metric space. Let :T X X→
be a non-decreasing mapping. Suppose that there exist two functions 

: [ , )X Xα × → ∞0 and ψ∈Ψ such that

( , ) ( ( ,( , ) )) . ( , )d Tx Ty x yy L x yxα ψ≤ Μ + Ν , where (2.4.1) 

( , ) ( , ) ( , ) ( , )max{ ( , ), , ,
( , ) ( , )

( , ) ( , ) ( , ) ,      }
( , )

d x Tx d y Ty d x Ty d y Txd x y
d x y d x y

x y d x Tx d x Ty if x
d x y

if x

y x y         

y

= ≠

Μ

=

 



 0
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and ( , ) min{ ( , ), ( , ), ( , )}x y d x Tx d x Ty d y TxΝ = , ,x y X∈ with x y .

Also, assume that

(i) T  is α-admissible;

(ii) there exists x X∈0 such that ( , )x Txα ≥0 0 1with x Tx0 0 ; either

(iii) T  is continuous (or)

(iv) if{ }nx  is a non-decreasing sequence in X  such that nx x→ as n→∞
then sup{ };nx x= and also ( , )x xα ≥0 1and ( , )x Txα ≥1 . 

If condition (H) holds, then T  has a unique fixed point.

Proof: Since the inequality (2.4.1) implies (1.13.1), it follows that T  is a 
( , )α ψ -contraction map, and hence by Theorem 2.1, T  has a fixed point. 
Suppose that ,x y X∈ are two fixed points of T . By condition (H), there exists 
z X∈ such that 

x z and y z , ( , )x zα ≥1 and ( , )y zα ≥1.

Put z z= 0  and choose z X∈1 such that z Tz=1 0 .

We define a sequence { }nz in X  by n nz Tz+ =1 for all n≥ 0 . Then x z0 and 
y z0 ( , )x zα ≥0 1and ( , )y zα ≥0 1 . By using the non-decreasing property 

of T , we have Tx Tz0  and y Tz0 Hence x z1 and y z1 .

On continuing this process, we have 

nx z  and ny z  for n≥ 0  (2.4.2)

Now, since T  is α -admissible, we have

( , )Tx Tzα ≥0 1and ( , )Ty Tzα ≥0 1 . Hence ( , )x zα ≥1 1and ( , )y zα ≥1 1 .

On repeating this process, we have

( , )nx zα ≥1and ( , )ny zα ≥1  for n≥ 0 . (2.4.3)

In (2.4.2), if nx z=  for some n, then nTx Tz=  so that nx z += 1  Also, we have 

mx z= for m n≥ so that lim nn
z x

→∞
= .
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Hence w. l. g we assume that nx z≠ for all n . 

By using (2.4.1) with (2.4.3) we have

( , ) ( , )
( , ) ( , )

( , ) ( , ) ( , ) ( , )(max{ ( , ), , ,
( , ) ( , )

( , ) ( , )}) min{ ( , ), ( , ), ( , )}
( , )

( , ) ( , ) ( ,
(max{ ( , ), ,

( , )

n n

n n

n n n n
n

n n

n
n n

n

n n n
n

n

d x z d Tx Tz
x z d Tx Tz

d x Tx d z Tz d x Tz d z Txd x z
d x z d x z

d x Tx d x Tz L d x Tx d x Tz d z Tx
d x z

d x x d z z d x z
d x z

d x z

α

ψ

ψ

+

+

=
≤

≤

+

≤

1

1 ) ( , )
,

( , )
( , ) ( , )

}) min{ ( , ), ( , ), ( , )}
( , )

(max{ ( , ), ( , )}      ( . . )

n

n

n
n n

n

n n

d z x
d x z

d x x d x z
L d x Tx d x z d z x

d x z
d x z d x zψ

+

+
+

+

+

≤

1

1
1

1 2 4 4

Now, if max{ ( , ), ( , )} ( , )n n nd x z d x z d x z+ +=1 1  then we have

( , ) ( ( , )) ( , ),n n nd x z d x z d x zψ+ + +≤ <1 1 1

a contradiction.

Hence, from (2.4.4), we have 

max{ ( , ), ( , )} ( , )n n nd x z d x z d x z+ =1 so that

( , ) ( ( , )) ( ( ( , )))
( ( , )) ( ( , )) .... ( ( , )) as n .

n n n
n

n n

d x z d x z d x z
d x z d x z d x z

ψ ψ ψ
ψ ψ ψ

+ −

− −

≤ =
≤ ≤ ≤ ≤ → →∞

1 1
2 3

1 2 1 0

Therefore lim nn
z x

→∞
= . (2.4.5)

By applying the similar argument to { }ny it follows that

 
lim nn

z y
→∞

= . (2.4.6)

From (2.4.5) and (2.4.6) we have x y= .

This completes the proof of the Theorem.
In the following, we provide examples in support of the results obtained in 
Section 2.



Babu, GVR
Sarma, KKM
Kumari, VA

114

Example3.1.Let [ , ]X = 0 4  with the usual metric. We define a partial order 
on X by : {( , ) : , [ , ), } {( , ) : , [ , ], }x y x y x y x y x y x y= ∈ = ∪ ∈0 2 2 4  . Then 
( ),X  is a partially ordered set. 

We define :T X X→  by ( )

,if

x if x

xT x if x

x

 ≤ <= − ≤ < ≤ ≤

0 1
2

3 101 1
2 3

10 4
3

4

and : [ , )X Xα × → ∞0  by {( , ) .
if x and yx y otherwiseα ≤ ≤ == 1 2 4 4

0

Here we note that T is non-decreasing on X and continuous on X . Moreover, 

we choose x X= ∈0
10
3

, then ( , ) ( , )x Txα α= ≥0 0
10 4 1
3

 and ,T≤ =
10 10 4
3 3

for x =0
10
3

, x Tx= =1 0 4  and n nx Tx −= =1 4  for all n≥1and hence

lim nn
x x

→∞
= = 4 . Also ( , ) ( , )x xα α= ≥0

10 4 1
3

 and ( , ) ( , ) .x Tx Tα α= ≥4 4 1

Now, we show that T is α -admissible.

Case (i) x≤ <
102
3  

and y= 4 .

In this case, [ , )Tx∈ 2 4 and Ty T= =4 4 .

Therefore, by the definition of α  we have ( , )Tx Tα =4 1 .

Case (ii) x< ≤
10 4
3  

and y= 4 .

In this case, Tx= 4 and Ty T= =4 4 and hence, ( , ) ( , )Tx Tyα α= =4 4 1 . 
Therefore, T is α -admissible. Now, we verify the inequality (1.13.1) by choosing 

ψ∈Ψ given by ( ) ttψ =
2

for t≥ 0 and .L= 1
2
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Case (i) x≤ <
102
3

and y= 4 .

In this case, ( , ) , ,xx y Tx Tyα = = − =
31 1 4
2

and ( ,( , ))d Tx T xx yyα = −
35
2

,

( , ) max{ , , , , }xx y x x xΜ = − − − = −
34 0 5 0 1 4
2 2  

and

.
( , ) min{ , , } {

x if x

x if x

xx y x x
− ≤ ≤

− ≤ ≤
Ν = − − − =

1 2 3
2

3 105 3
2 3

34 5 1
2 2

Sub Case (i):

( , ) ( ) ( ) ( ( , )) . ( , ).( , ) xx d Tx Ty x x y L x yx y ψα− = ≤ − + − = Μ + Ν
3 1 15 4 1
2 2 2 2

Sub Case (ii):

 ( , ) ( ) ( ) ( ( , )) .( ( )., ) ,x d Tx Ty x x x y L x yx yα ψ− = ≤ − + − = Μ + Ν
3 1 1 35 4 5
2 2 2 2

Case (ii) x≤ ≤
10 4
3

and y= 4 .

In this case, ( , ) ( , )d Tx Ty d= =4 4 0 , hence we have 

( , ) ( ( , )) . ( .) ,( ),x y d Tx Ty x y L x yψα = ≤ Μ + Ν0

Therefore T satisfies the inequality (1.13.1) and hence T satisfies all the 
hypotheses of Theorem 2.1 andT  has three fixed points 0 , 2  and 4 .

Here we note that if L= 0 in the inequality (1.13.1), then for x= 2 and 
y= 4 we have ( , ) ( , )  ( ( , )) ( )d T T ψα ψ Μ= =2 42 2 24 4 2 for any ψ∈Ψ . 

Hence the inequality (1.13.1) fails to hold when L= 0 . This example shows 
the importance of L in the inequality (1.13.1) of Theorem 2.1.

Further, we observe that the inequality (1.9.1) also fails to hold. For, by 
choosing ( , ) ( , )x y = 2 4 we have

( , ) ( , ). . ( , )
( , )

( , )  d T d
d

T Td T dα β α β+ < = +=
2 2 4 402 4 2 2 1 2 4

2 4
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for any , [ , )α β ∈ 0 1 with α β+ <1 . 

Hence Theorem 1.9 isnot applicable. Therefore, by Remark 2.3 (i) it 
follows that Theorem 2.1 is a generalization of Theorem 1.9.
Remark 3.2.We note that T  also satisfies the inequality (2.4.1) with the same 

α  and ψ  that are mentioned in Example 3.1. But, for x= 1
4  

and y= 1
2

, and for 

any z in X , z1
4


 
and z1

2
 ; also ( , )zα

1 1
4

 , ( , )zα
1 1
2

 . Hence condition 

(H) of Theorem 2.4 fails to hold and T , α  and ψ  satisfy all the remaining 

hypotheses of Theorem 2.4. We observe that T  has more than one fixed point 

namely 0 , 2  and 4 .
The following is an example in support of Theorem 2.1 when (iv) of 

Theorem 2.1 holds, but T fails to be continuous.

Example 3.3. Let [ , ]X = 0 2 with the usual metric. We define a partial order 

on X  by : {( , ) : , [ , ), } {( , ),( , ),( , )}x y x y x y= ∈ = ∪
30 2 0 2 1 2 2
2

 .

Let {( , ) : , [ , ), } {( , ),( , ),( , )}A x y x y x y= ∈ = ∪
30 2 0 2 1 2 2
2  

and {( , ) : , a, d }n,B x y X X x y x y= ∈ × ≠ ≠ ≠
30 1 2
2

.

We define :T X X→  by {( ) x if xT x if x
− ≤ <=

< ≤
1 0 1
2 1 2  and : [ , )X Xα × → ∞0

by ( , )

( .
)

,
( ,

)

if x y A

if x y B
x yα

=

∈

∈

3
2
0

Here we note that T is non-decreasing on X , not continuous and α

-admissible. Moreover, we choose x X= ∈0
3
2

, then ( , ) ( , )x Txα α= ≥0 0
3 2 1
2

and T3 3
2 2
 , for ,x x Tx= = =0 1 0

3 2
2

and n nx Tx −= =1 2 for all n≥1and 
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hence lim .nn
x x

→∞
= = 2  Also ( , ) ( , )x xα α= ≥0

3 2 1
2

and ( , ) ( , ) .x Tx Tα α= ≥2 2 1  

Now, we verify the inequality (1.13.1) by choosing ψ∈Ψ given by ( )t tψ =
2
5

for t≥ 0 and L= 3 .

Case (i): x= 0 and y= 2 .

In this case, ( , ) , ,x y Tx Tyα = = =
3 1 2
2  

and ( , ) ( , )x y d Tx Tyα =
3
2

,

( , ) max{ , , , , }x yΜ = =2 0 1 0 1 2 and ( , ) min{ , , }x yΝ = =2 1 1 1 . 

Hence, we have

( , ) ( , ) ( ) . ( ( , )) . ( , ).x y d Tx Ty x y L x yα ψ= ≤ + = Μ + Ν
3 2 2 3 1
2 5

Case (ii): x=1 and y= 2 .

In this case, ( , )x yα =
3
2

, ,Tx Ty= =0 2  and ( , ) ( , )x y d Tx Tyα = 3 ,

( , ) max{ , , , , }x yΜ = =1 0 2 0 1 2  and ( , ) min{ , , }x yΝ = =1 1 2 1 .

Hence, we have

( , ) ( , ) ( ) . ( ( , )) . ( , ).x y d Tx Ty x y L x yα ψ= ≤ + = Μ + Ν
23 2 3 1
5

Case (iii): x= 3
2

and y= 2 .

In this case, the inequality (1.13.1) trivially hold.
From all the cases considered above, T satisfies the inequality (1.13.1) 

and hence T satisfies all the hypotheses of the Theorem 2.1 and T  has two 

fixed points 1
2

and 2 .

Here we note that if L= 0  in the inequality (1.13.1), then for x=1 and 
y= 2 we have ( , ) ( , ) ( ) ( ( , ))d T Tα ψ ψ= = Μ1 2 1 2 3 2 1 2 for any ψ∈Ψ so that 

the inequality (1.13.1) fails to hold when L= 0 , which shows the importance 
of L  in Theorem 2.1.
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 Further, we observe that the inequality (1.9.1) fails to hold. For, by choosing
( , ) ( , )x y = 1 2 we have

( , ) ( , )( , )
(

)
,

.
)

. ( ,d T d TT T
d

dd α β α β+ < == +
1 1 2 201 2

1
12

2
1 1 2 .

Hence Theorem 1.9 is not applicable. Therefore, by Remark 2.3 it follows that 
Theorem 2.1 is a generalization of Theorem 1.9.
One more example in support of Theorem 2.1 is the following:
Example 3.4.Let , , ,X T αΨ  and partial order be as in Example 1.14. Then 
T  is α -admissible and choose x X= ∈0 2 . Then ( , ) ( , )x Txα α= ≥0 0 2 3 1  and 

T2 2� . Also T is an almost generalized ( , )α ψ -contraction map with rational 
expressions with L= 3  and is verified in Example 1.14. Hence T satisfies all 
the hypotheses of Theorem 2.1 and T  has two fixed points 0 and 4 .

Here we note that the inequality (1.13.1) fails to hold when L= 0 . For, 

when x= 2  and y= 0  we have ( , ) ( , ) ( ) ( ( , ))d T T Mα ψ ψ= =
92 0 2 0 3 2 0
2


for any ψ∈Ψ , which shows the importance of L in Theorem 2.1.
Further this T is neither Jaggi contraction nor almost Jaggi contraction 

and it is observed in Example1.14.
Hence, by Remark 2.3 (i) and (ii), we conclude that Theorem 2.1 is a 

generalization of Theorem 1.9 and Theorem 1.11.
 We conclude this paper with the following example in support of  

Theorem 2.4.
Example 3.5. Let { , , }X = 0 1 2  with the usual metric. We define a 

partial order   on X by : {( , ),( , ),( , ),( , ),( , ),( , )}= 0 0 1 1 2 2 0 1 0 2 1 2 . Let 

{( , ),( , ),( , ),( , ),( , ),( , )}A= 0 0 1 1 2 2 0 2 2 0 1 2  and {( , ),( , ),( , )}B= 0 1 1 0 2 1 . We 

define  :T X X→  by ,T T= =0 2 1 0  and T =2 2 . We define : [ , )X Xα × → ∞0  

by ( , )

( .
)

,
( ,

)

if x y A

if x y B
x yα

=

∈

∈

3
2
0

Then T  is continuous, non-decreasing and α -admissible. We choose 

x X= ∈0 0 . Clearly x Tx0 0 and ( , ) ( , )x Txα α= = ≥0 0
32 2 1
2

. Further, T
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satisfies the inequality (2.4.1) by choosing ψ∈Ψ given by ( )t tψ =
4
5

 for 

t≥ 0  and L= 2 . Hence T satisfies all the hypotheses of Theorem 2.4 and 2  

is the unique fixed point of .T
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