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Abstact: We derive bounds on the second order moment of a random 
variable in terms of its arithmetic and harmonic means. Both discrete and 
continuous cases are considered and it is shown that the present bounds provide 
refinements of the bounds which exist in literature. As an application we 
obtain a lower bound for the spread of a positive definite matrix A in terms 
of traces of A, A-1 and A2. Our results compare favourably with those 
obtained by Wolkowicz and Styan (Bounds for eigenvalues using traces, 
Lin. Alg. Appl. 29, 471-506, 1980).
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1. INTRODUCTION

Let a random variable x, discrete or continuous takes values in the interval a 
≤ x ≤ b. Let H, µ '

1 and µ '
2 respectively denote the harmonic mean, arithmetic 

mean and second order moment about origin of the random variable x. The 
well-known Kantorovich inequality says that [1]
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4
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'

, .
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a b
ab

a≤
+( )

> (1.1)

The inequality (1.1) follows from the inequality [2],

µ1
' .≤ + −a b ab

H
(1.2)
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Sharma [3] shows that
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where S2 is the variance of the random variable x. The inequality (1.3) provides 
a refinement of (1.1). Several authors have worked on such inequalities, their 
further refinements, extensions and applications. In particular, Krasnosel’skii 
and Krein [4] proved that
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The inequality (1.4) follows from the inequality [2],

µ µ2 1
' ' .≤ +( ) −a b ab (1.5)

We note that the inequalities (1.1) and (1.2) involve µ1
' and H while (1.4) and 

(1.5) involve µ1
'  and µ2

' . Our main result (Theorem-2.1 and 2.2, below) relate
µ1

' , µ2
' and H at the same time, and provides refinements of the inequalities 

(1.5), (Corollary-2.1, below). The bounds for the harmonic mean are deduced 
(Corollary-2.2, below). A refinement of the Krasnosel’skii and Krein inequality 
(1.4) is also obtained, (Corollary-2.3, below). As an application we obtain 
a lower bound for the spread of a positive definite matrix A (Theorem-3.1, 
below) in terms of traces of A, A-1and A2.

2. MAIN RESULTS

Theorem-2.1

Let a discrete random variable takes a finite set of real values x x xn1 2, ,..., ,with
corresponding probabilities p p pn1 2, ,..., . Let 0 1 2< ≤ ≤ =a x b i ni , , ,...,  and
a H b< < . Then

µ µ
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and 
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a H
H a

(2.2)
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The inequalities (2.1) and (2.2) become equalities when n = 2.

Proof 

For 0 < ≤ ≤a x bi , we have x x bi i−( ) −( )≤α 2
0  for any real number

α, , ,...,i n=1 2 . This gives

x b x b b
xi i

i

2
2

2 2 0− +( ) + +( )− ≤α α α
α , (2.3)

i n=1 2, ,..., . Multiplying both sides of (2.3) by pi and adding these n 
inequalities, we get on simplification,

b H H b H b−( ) − −( ) + −( )≥α µ α µ µ2
1 1 22 0' ' ' . (2.4)

The inequality (2.4) holds for all real values of α and therefore its discriminant 
must be non positive. Hence, we must have

4 4 02
1

2

1 2H b H b H b−( ) − −( ) −( )≤µ µ µ' ' ' .  (2.5)

The inequality (2.1) now follows easily from (2.5). On using similar arguments 
we find that

H a H a H a−( ) − −( ) + −( )≥β µ β µ µ2
1 2 12 0' ' ' . (2.6)

The inequality (2.2) now follows from (2.6); the discriminant of the quadratic 
equation in (2.6) must be non positive. Consider the system of linear equations

p p p1 2 3 1+ + = , (2.7)

x p x p x p1 1 2 2 3 3 1+ + = µ ' (2.8)

and

x p x p x p1
2

1 2
2

2 3
2

3 2+ + = µ ' . (2.9)
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From (2.7), (2.8) and (2.9), we have

p
x b x b

a x a b1
2 2 1 2

2

=
− +( ) +

−( ) −( )
µ µ' '

, (2.10)

p
a b ab

x a x b2
2 1

2 2

=
− +( ) +

−( ) −( )
µ µ' ' (2.11)

and

p
a x ax

b a b x3
2 2 1 2

2

=
− +( ) +

−( ) −( )
µ µ' '

. (2.12)

On substituting the values of p1, p2 and p3 respectively from (2.10), (2.11) and 
(2.12) in

1 1 1 1

1
1

2
2

3
3x

p
x

p
x

p
H

+ + = , (2.13)

we get the following cubic equation in variable x2,

x a x b x
a b ab

a b ab
H

2 2 2
2 1

1

−( ) −( ) −
− +( ) +

− +( )+











µ µ

µ

' '

'



= 0.  (2.14)

It is easily seen that the root

x
a b ab

a b ab
H

2
2 1

1

=
− +( ) +

− +( )+

µ µ

µ

' '

'

(2.15)

of cubic equation (2.14) lies in the interval [a,b]. If equality sign holds in (2.1) 
then on substituting

H
b b

b b
=

−( )
−( ) + −( )

µ µ

µ µ µ

1 2

1
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1 2

' '

' ' '
(2.16)
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in (2.15) we find that 

x b
b2

1 2

1

=
−

−
µ µ
µ

' '

' . (2.17)

From (2.10)-(2.12) and (2.17),we get that p1 = 0,

p
b

b
2

1

2

2 1
2

1

2
=

−( )
− + −( )

µ

µ µ µ

'

' ' '
(2.18)

and

p
b

2
2 1

2

2 1
2

1

2
=

−

− + −( )
µ µ

µ µ µ

' '

' ' '
. (2.19)

Thus if equality sign holds in (2.1) then only two of the probabilities are non-
zero, n = 2. Similarly, we can show that if equality sign holds in (2.2) then n 
= 2. Conversly, if n = 2, we must have

µ µ2 1
' ' .= +( ) −a b ab (2.20)

From (2.10)-(2.12) and (2.20),we see that p2 = 0,

p b
b a

p a
b a1

1
3

1=
−
−

=
−
−

µ µ' '

.and (2.21)

Therefore

a p b p a b
b a

b a
b a
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2

Hence, the inequalities (2.1) and (2.2) reduce to equalities when n = 2. 
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Theorem-2.2

The inequalities (2.1) and (2.2) also hold good when H, µ1
'  and µ2

'  are 
respectively harmonic mean, arithmetic mean and second order moment about 
origin of a continuous random variable x whose probability density function 
φ x( )  takes non-zero values in the interval [a,b], such that a<H<b, and a>0. 

Proof: 

For 0 < ≤ ≤a x b , we have x x b−( ) −( )≤α 2
0 for any real number α.This 

gives 

x b x b b
x

2
2

2 2 0− +( ) + +( )− ≤α α α
α . (2.22)

Multiplying both sides the inequality (2.22) by probability density function 
φ x( ) , we get on using the properties of the definite integral,

b H b H b H−( ) − −( ) + −( ) ≥α µ α µ µ2
1 1 22 0' ' ' . (2.23)

This shows that inequality (2.1) remains valid when x is a continuous random 
variable. On using similar arguments we can show that (2.2) also hold good for 
the case when x is a continuous random variable.

Corollary-2.1

For a random variable which is discrete or continuous and takes values in the 
interval [a,b], we have

µ µ
µ

µ2 1

1

1
' '

'
' .≤ +( ) − −

−( )
−

+ − −






a b ab

H b
b H

a b ab
H

 (2.24)

The inequality (2.24) provides the refinement of the inequality (1.5).

Proof: 

From the inequality (2.1), we have,

µ µ
µ

µ2 1
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µ µ µ
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(2.26)

Combining (2.25) and (2.26) we immediately get (2.24).

Corollary-2.2

For a discrete or continuous random variable varying over the interval [a,b], 
we have

H
b b

b b
≤

−( )
−( ) + −

µ µ

µ µ µ

1 2

1

2

1 2

' '

' ' '
(2.27)

 and

H
a a

a a
≥

−( )
− − −( )
µ µ

µ µ µ

2 1

2 1 1

2

' '

' ' '
. (2.28)

Proof:

The inequalities (2.27) and (2.28) follow easily from (2.1) and (2.2), 
respectively.

Corollary-2.3

For a random variable which is discrete or continuous and takes values in the 
interval [a,b], we must have
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2 2 2
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2 24 4
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+( ) − +( )





+ +( ) −

a b
ab

a b H a b ab

abH a ab b H a ++( )



b ab
.  (2.29)

The inequality (2.29) provides a refinement of the Krasnosel’skii and Krein 
inequality (1.4).
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Proof:

We note that
µ
µ

σ
µ

2

1
2

2

1
2

1
'

' ' .≤ + (2.30)

Therefore it suffices to prove that
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abH a ab b H a bb ab( )




.  (2.31)

Multiplying both sides of the inequalities (2.1) and (2.2) respectively by b and 
(-a) we get on adding the resulting inequalities:
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 (2.32)

Consider a function

f
H

x yµ
µ

µ
µ1

1

1
2 1

'
'

'
'( )≤

−( )
−



 (2.33)

where

x a ab b H a b ab= + +( ) − +( )2 2 (2.34)

and

y a b H ab= +( ) − .   (2.35)

The derivative

f
Hx x Hy' '

'

'µ
µ

µ1
1

1
3

2( )≤
− +( ) (2.36)

vanishes at
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µ1

2' .=
+
Hx

x Hy
(2.37)

The function f µ1
'( )  has maximum at the value of µ1

'  given by (2.37). Hence

f
a b H a b H

Hx
µ1

2

4
' .( )≤

+( ) −( ) −( ) (2.38)   

Combining (2.33), (2.34), (2.35) and (2.38), we easily get the inequality (2.31). 
It is evident that the inequality (2.29) provides a refinement of the inequality 
(1.4). We also note here that the function

g H
a b H a b H

a ab b H a b abH
( )≤

+( ) −( ) −( )
+ +( ) − +( )( )

2

2 2 24
.  (2.39)

The derivative

g H

a b ab a ab b a b a b H a b a b

a ab b

'( )
( ) ( ) ( )( ) ( )

≤
+ + + − + + − +

+ +

2 2 2 2 2 2 2 2

24

2

22 2 2( ) ( )( )− +H a b abH
 (2.40)

has maximum at

H
a b ab
a b

=
+( )

+2 2
.  (2.41)

Therefore

g H
b a

ab
( )≤

−( )2

4
. (2.42)

3. AN APPLICATION

Let λ λ λ1 2, ,..., ,n  be the eigenvalues of an n×n matrix A. The spread of A is 
defined by

s A
i j i j( )= −max .
,
λ λ   (3.1)
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This quantity of Hermition and positive definite matrices is important in matrix 
analysis, and has applications in combinatorial optimization problems [5]. 
Several authors have given bounds for the spread. In particular, Wolkowicz 
and Styan [6], have obtained the following lower bound for the spread of 
positive definite matrix in terms of traces of A and A²,

s A trA
n

trA
n

( )≥ −






2

2 2

,n even (3.2)

and

s A n
n

trA
n

trA
n

( )≥
−

−






 ≥

2

1
1

2

2 2

,n odd (3.3)

Here we obtain a lower bound for the spread of positive definite matrix in 
terms of traces of A, A-1 and A2. Our results compare favourably then those 
obtained by Wolkowicz and Styan [6], (Example 1 and 2, below).

Theorem-3.1

Let A be n×n positive definite matrix with eigenvalues 0 1 2< ≤ ≤ ≤λ λ λ... n . 
Then

s A
trA trA ntrA trAtrA n ntrA trA

trAtrA
( )≥

−( ) − −( ) −( )( )− −

−

2 1 2 1 2 2 2
4

11 2− n
 (3.4)

Proof:

Let H, µ1
'  and µ2

'  respectively denote the harmonic mean, arithmetic mean 
and second order moment about origin of the n eigenvalues λ λ λ1 2, ,..., n . Then

µ1
' ,=

trA
n

(3.5)

µ2

2
' =

trA
n

(3.6)

and
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H n
trA

= −1
. (3.7)

From the inequalities (2.1) and (2.2) we respectively find that

λ
µ µ µ µ µ µ µ

µn

H H H H

H
≥

− + −( ) − −( ) −( )
−( )

2 1 2 1

2

1 2 1
2

1

4

2

' ' ' ' ' ' '

'
 (3.8)

and

λ
µ µ µ µ µ µ µ

µ1

2 1 2 1

2

1 2 1
2

1

4

2
≤

− − −( ) − −( ) −( )
−( )

' ' ' ' ' ' '

'

H H H H

H
 (3.9)

On subtracting (3.9) from (3.8), we get that

λ λ
µ µ µ µ µ

µn

H H H

H
− ≥

−( ) − −( ) −( )
−1

2 1

2

1 2 1
2

1

4' ' ' ' '

'
 (3.10)

On substituting values of µ1
' , µ2

'  and H respectively from equations (3.5), 
(3.6) and (3.7)  in the inequality (3.10),  we immediately get (3.4).

Example 1.

Let

A =

4 0 2 3

0 5 0 1

2 0 6 0

3 1 0 7

(3.11)

We have, trA = 22, trA2 = 154 and
 
trA− =1 481

410
. From the inequality we 

get s A( )≥ 5 950. , , where as Wolkowicz and Styan [6] have shown than

s A( )≥ 5 744. .
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Example 2.

Let

A =

1 1 1 1

1 2 0 1

1 0 3 1

1 1 1 4

(3.12)

We have trA = 10, trA2 = 40 and trA− =1 29

3
. From the inequality we 

get s A( )≥ 3 9362. , , where as Wolkowicz and Styan [6] have shown that 
s A( )≥ 3 8730. . 
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