On χ_s -Orthogonal Matrices

K. JAIKUMAR[†]*, S. AARTHY[†] AND K. SINDHU[†]

[†]Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India.

*Email: drkjkavcc@gmail.com

Received: August 02, 2017 | Revised: August 14, 2017 | Accepted: August 23, 2017 Published Online: September 01, 2017 The Author(s) 2017. This article is published with open access at www.chitkara.edu.in/publications

Abstract: In this paper we, introduced the concept of χ_s -orthogonal matrices and extended some results of Abara et al, [3] in the context of secondary transpose.

Key words: χ_s -orthogonal matrices, s-unitary matrices, s-normal matrices. AMS Classification: 15B99, 15A24, 15A54.

1. INTRODUCTION AND PRELIMINARIES

The concept of secondary transpose and related matrices was initiated by [1,2]. An $n \times n$ matrix A is said to be s-symmetric if $A^s = A$; an A is said to be s-skew symmetric if $A^s = -A$; an A is s-normal if $AA^s = A^sA$; an χ_s -orthogonal if $A^s = A^{-1}$; and an A is said to be s-unitary if $A^s = A^{-1}$ [4, 5]. Here we introduce the matrix, namely χ_s -orthogonal and derived some results related to χ_s -orthogonal matrices. An $n \times n$ non-singular matrix A is said to χ_s -orthogonal, if $\chi_s(A) = A^{-1}$, where $\chi_s(A) = S^{-1}A^sS$ and S satisfies the condition $S^2 = \pm I$; an A is said to be χ_s -symmetric if $\chi_s(A) = A$; and an A is called χ_s -skew symmetric if $\chi_s(A) = -A$.

Remark 1.1. Let A be an $n \times n$ matrix and it is said to be χ_s -orthogonal, if one of the following conditions must hold

(i) $S^{-1}A^{s}S = A^{-1}$ (ii) $A^{s}SA = S$ (iii) $A^{s}S = SA^{-1}$ (iv) $A^{s} = SA^{-1}S^{-1} = S(SA)^{-1}$

2. χ_{*} -ORTHOGONAL MATRICES

Theorem 2.1. Let A be an $n \times n$ matrix and it is χ_s -symmetric (χ_s -skew symmetric), then so are (a). A^{-1} (b). -A and (c). λA (λ is an arbitrary constant).

Mathematical Journal of Interdisciplinary Sciences Vol-6, No-1, September 2017 pp. 49–53 Jaikumar, K. Aarthy, S. Sindhu, K.

Proof. A is
$$\chi_s$$
-symmetric, if $\chi_s(A) = A \Rightarrow S^{-1} A^s S = A$.
(a) $S^{-1}(A^{-1})^s S = S^{-1}(A^s)^{-1}S$
 $= S^{-1}(SAS^{-1})^{-1}S$
 $= S^{-1}[(SA)S^{-1}]^{-1}S$
 $= S^{-1}SA^{-1}S^{-1}S$
 $= A^{-1}$
(b) $S^{-1}(-A)^s S = S^{-1}(-A^s)S$
 $= -S^{-1}A^s S$
 $= -A$
(c) $S^{-1}(\lambda A)^s S = S^{-1}\lambda A^s S$
 $= \lambda S^{-1}SAS^{-1}S$
 $= \lambda A$

Similarly we have to prove the same for χ_s -skew symmetric.

Corollary 2.2. Let $S \in S_n$ and $S^2 = I$. If A is an $n \times n$ matrix and it is χ_s -symmetric (χ_s -skew symmetric), then A^s is also.

Proof. A is χ_s -symmetric, if $\chi_s(A) = A \Rightarrow A^s S A^{-1} = S$.

$$(A^{s})^{s}S(A^{s})^{-1} = AS(A^{s})^{-1}$$

= $S^{-1}A^{s}SS(A^{s})^{-1}$
= $S^{-1}A^{s}(A^{s})^{-1}$
= S^{-1}
= S

Similarly we have to prove the same for χ_s -skew symmetric.

Remark 2.3. If A is an $n \times n$ matrix and it is χ_s -symmetric, then $(A+A^s)$ and A^sA are not.

Theorem 2.4. If A and B are χ_s -symmetric (χ_s -skew symmetric) with same size, then (a). A + B and (b). A – B are also.

Proof. A is
$$\chi_s$$
-symmetric, if $\chi_s(A) = A \Rightarrow S^{-1}A^sS = A$.

(a)
$$S^{-1}(A + B)^{s}S = S^{-1}(A^{s} + B^{s})S$$

 $= (S^{-1}A^{s} + S^{-1}B^{s})S$
 $= S^{-1}A^{s}S + S^{-1}B^{s}S$
 $= (A + B)$
(b) $S^{-1}(A - B)^{s}S = S^{-1}(A^{s} - B^{s})S$
 $= (S^{-1}A^{s} - S^{-1}B^{s})S$
 $= S^{-1}A^{s}S - S^{-1}B^{s}S$
 $= (A - B)$

Similarly we have to prove the same for χ_s -skew symmetric.

On χ_s -Orthogonal **Theorem 2.5.** Let A be an $n \times n$ matrix and it is χ_s -orthogonal, then (a). –A and (b). A^{-1} are, also χ_s -orthogonal. Matrices *Proof.* A is χ_s -orthogonal, if $A^sSA = S$. (a) $(-A)^{s}S(-A) = A^{s}SA$ $= SA^{-1}S^{-1}SA$ $= SA^{-1}A$ = STherefore -A is χ_s -orthogonal (b) $(A^{-1})^{s}SA^{-1} = (As)^{-1}SA^{-1}$ $= (SA^{-1}S^{-1})^{-1}SS^{-1}A^{s}S$ $= ((SA^{-1})S^{-1})^{-1}A^{s}S$ $= (S^{-1})^{-1}(SA^{-1})^{-1}A^{s}S$ $= S(A^{-1})^{-1}SA^{s}S$ $= SASA^{s}S$ $= SASSA^{-1}S^{-1}S$ $= SAA^{-1}$ = S

Therefore A^{-1} is χ_{s} -orthogonal.

Corollary 2.6. Let $S \in S_n$ and $S^2 = I$. If A is an $n \times n$ matrix and it is χ_s -orthogonal, then (a). A^s and (b). AA^s are also.

Proof. A is
$$\chi_s$$
-orthogonal, if $A^sSA = S$.
(a) $(A^s)^sS(A^s) = AS(A^s)$
 $= ASSA^{-1}S^{-1}$
 $= SAA^{-1}S^{-1}$
 $= S$
(b) $(AA^s)^sS(AA^s) = (A^s)^sA^sSAA^s$
 $= AA^sSAA^s$
 $= ASA^{-1}S^{-1}SASA^{-1}S^{-1}$
 $= ASSA^{-1}S^{-1}$
 $= ASA^{-1}S^{-1}$
 $= S^{-1}$
 $= S$

Jaikumar, K. Aarthy, S. Sindhu, K. **Theorem 2.7.** Product of two χ_s -orthogonal matrix is also χ_s -orthogonal. Proof. Let A and B are χ_s -orthogonal. Then by the definition $A^sSA = S$ and $B^sSB = S$.

$$\Rightarrow (AB)^{s}S(AB) = B^{s}A^{s}SAB$$
$$= SB^{-1}S^{-1}SA^{-1}S^{-1}SAB$$
$$= SB^{-1}A^{-1}AB$$
$$= S(AB)^{-1}AB$$
$$= S$$

Therefore AB is χ_s -orthogonal.

Lemma 2.8. Let $S \in S_n$ and A is an $n \times n$ s-normal, χ_s -orthogonal with $-1 \in \sigma(A)$. Then there exist χ_s -orthogonal $P, Q \in M_n(C)$ such that P is positive definite, Q is s-unitary P and Q commute, and A = PQ.

Lemma 2.9, Let $S \in S_n$ and A is an $n \times n$ s-normal, χ_s -orthogonal with $-1 \in \sigma(A)$.

- (a) Then there exist s-hermitian χ_s -skew symmetric $P_1, Q_1 \in M_n(C)$ such that P_1 and Q_1 commute and $A = e^{P_1 + iQ_1}$.
- (b) A is positive definite if and only if there exists a s-hermitian χ_s -skew symmetric $P \in M_u(C)$ such that $A = e^p$.
- (c) If A is s-unitary, then there exists a s-hermitian χ_s -skew symmetric $Q \in M_n(C)$ such that $A = e^{iQ}$.

Corollary 2.10. Let $S \in S_n$ and A is an $n \times n$, χ_s -orthogonal matrix. Then A is s-hermitian and positive definite if and only if there exists a s-hermitian χ_s -skew symmetric $P \in M_n$ such that $A = e^p$.

Corollary 2.11. Let Q be a $n \times n$, s-hermitian χ_s -skew symmetric matrix, then $A\overline{A}^s = e^Q$.

Theorem 2.12. Let $S \in S_n$ and A is an $n \times n$, χ_s -orthogonal matrix. Then there exist χ_s -orthogonal $P, V \in M_n$, with P be positive definite and V is s-unitary such that A = PV.

Theorem 2.13. Let $S \in S_n$ be given. Let $Q \in M_n$ be s-orthogonal, and set $U \equiv QSQ^s$ and $V \equiv QAQ^s$. Then

- (a) An $n \times n$ matrix A is χ_s -orthogonal $\Leftrightarrow V^s UV = U$.
- (b) An $n \times n$ matrix A is χ_s -symmetric $\Leftrightarrow V^s UV^{-1} = U$.
- (c) An $n \times n$ matrix A is χ_s -skew symmetric $\Leftrightarrow V^s UV^{-1} = -U$.

On χ_s -Orthogonal Matrices

1100j.		
(a) $V^sUV = U$	\Leftrightarrow	$(QAQ^s)^s QSQ^s (QAQ^s) = QSQ^s$
	\Leftrightarrow	$[(QA)Q^s]^sQSQ^sQAQ^s=QSQ^s$
	\Leftrightarrow	$(Q^s)y(QA)^sQSAQ^s = QSQ^s$
	\Leftrightarrow	$QA^{s}Q^{s}QSAQ^{s} = QSQ^{s}$
	\Leftrightarrow	$QA^sSAQ^s = QSQ^s$
	\Leftrightarrow	$A^{s}SA = S$
(b) $V^{s}UV^{-1} = U$	\Leftrightarrow	$[QAQ^s]^sQSQ^s[QAQ^s]^{-1} = QSQ^s$
	\Leftrightarrow	$[(QA)Q^s]^sQSQ^s[(QA)Q^s)^{-1}=QSQ^s$
	\Leftrightarrow	$(Q^s)^s(QA)^sQSQ^s[(Q^s)^{-1}(QA)^{-1}=QSQ^s$
	\Leftrightarrow	$QA^sQ^sQSQ^s[(Q^s)^{-1}A^{-1}Q^{-1}] = QSQ^s$
	\Leftrightarrow	$QA^sSQ^s(Q^s)^{-1}A^{-1}Q^{-1} = QSQ^s$
	\Leftrightarrow	$QA^sSA^{-1}Q^{-1} = QSQ^{-1}$
	\Leftrightarrow	$A^sSA^{-1} = S$
(c) $V^s U V^{-1} = -U$	\Leftrightarrow	$[QAQ^s]^sQSQ^s[QAQ^s]^{-1} = -QSQ^s$
	\Leftrightarrow	$[(QA)Q^s)^s]^sQSQ^s[(QA)Q^s]^{-1} = -QSQ^s$
	\Leftrightarrow	$(Q^s)^s(QA)^sQSQ^s[(Q^s)^{-1}(QA)^{-1}] = -QSQ^s$
	\Leftrightarrow	$QA^sQ^sQSQ^s[(Q^s)^{-1}A^{-1}Q^{-1}] = -QSQ^s$
	\Leftrightarrow	$QA^{s}SQ^{s}(Q^{s})^{-1}A^{-1}Q^{-1} = -QSQ^{s}$
	\Leftrightarrow	$QA^sSA^{-1}Q^{-1} = -QSQ^{-1}$
	\Leftrightarrow	$A^sSA^{-1} = -S$

REFERENCES

Proof

- [1] Anna Lee, Secondary symmetric, skew symmetric and orthogonal matrices, Periodica Mathematica Hungarica, **7**(1)(1976), 63-70.
- [2] Anna Lee, On s-symmetric, s-skew symmetric and s-orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 61–76.
- [3] Ma. Nerissa M. Abara, Dennis I. Merino and Agnes T. Paras, φ_s-Orthogonal Matrices. Linear algebra and its Applications, 432(2010), 2834–2846.
- [4] S. Krishnamoorthy and K. Jaikumar, Secondary orthogonal similarity of a real matrix and its secondary, International Journal of Mathematics and Soft Computing, 2(1)(2012), 51–55.
- [5] S. Krishnamoorthy and K. Jaikumar, *On s-orthogonal matrices*. Global Journal of Computational Science and Mathematics, **1**(**1**)(2011), 1–8.