On χ_{s}-Orthogonal Matrices

K. JAIKUMAR ${ }^{* *}$, S. AARTHY ${ }^{\dagger}$ AND K. SINDHU ${ }^{\dagger}$
\dagger Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India.
*Email: drkjkavcc@gmail.com

Received: August 02, 2017 | Revised: August 14, 2017 | Accepted: August 23, 2017
Published Online: September 01, 2017
The Author(s) 2017. This article is published with open access at www.chitkara.edu.in/publications
Abstract: In this paper we, introduced the concept of χ_{s}-orthogonal matrices and extended some results of Abara et al, [3] in the context of secondary transpose.

Key words: χ_{s}-orthogonal matrices, s-unitary matrices, s-normal matrices.
AMS Classification: 15B99, 15A24, 15A54.

1. INTRODUCTION AND PRELIMINARIES

The concept of secondary transpose and related matrices was initiated by [1,2]. An $n \times n$ matrix A is said to be s-symmetric if $A^{s}=A$; an A is said to be s-skew symmetric if $A^{s}=-A$; an A is s-normal if $A A^{s}=A^{s} A$; an χ_{s}-orthogonal if $A^{s}=A^{-1}$; and an A is said to be s-unitary if $A^{s}=A^{-1}[4,5]$. Here we introduce the matrix, namely χ_{s}-orthogonal and derived some results related to χ_{s}-orthogonal matrices. An $n \times n$ non-singular matrix A is said to χ_{s}-orthogonal, if $\chi_{s}(A)=A^{-1}$, where $\chi_{s}(A)=S^{-1} A^{s} S$ and S satisfies the condition $S^{2}= \pm I$; an A is said to be χ_{s}-symmetric if $\chi_{s}(A)=A$; and an A is called χ_{s}-skew symmetric if $\chi_{s}(A)=-A$.
Remark 1.1. Let A be an $n \times n$ matrix and it is said to be χ_{s}-orthogonal, if one of the following conditions must hold
(i) $S^{-1} A^{s} S=A^{-1}$
(ii) $A^{s} S A=S$
(iii) $A^{s} S=S A^{-1}$
(iv) $A^{s}=S A^{-1} S^{-1}=S(S A)^{-1}$

2. X_{s}-ORTHOGONAL MATRICES

Theorem 2.1. Let A be an $n \times n$ matrix and it is χ_{s}-symmetric (χ_{s}-skew

Jaikumar, K.
Aarthy, S.
Sindhu, K.
Proof. A is χ_{s}-symmetric, if $\chi_{s}(A)=A \Rightarrow S^{-1} A^{s} S=A$.
(a) $S^{-1}\left(A^{-1}\right)^{\mathrm{s}} S=S^{-1}\left(A^{\mathrm{s}}\right)^{-1} S$

$$
=S^{-1}\left(S A S^{-1}\right)^{-1} S
$$

$$
=S^{-1}\left[(S A) S^{-1}\right]^{-1} S
$$

$$
=S^{-1} S A^{-1} S^{-1} S
$$

$$
=A^{-1}
$$

(b) $S^{-1}(-A)^{s} S=S^{-1}\left(-A^{s}\right) S$

$$
=-S^{-1} A^{s} S
$$

$$
=-A
$$

(c) $S^{-1}(\lambda A)^{s} S=S^{-1} \lambda A^{s} S$

$$
\begin{aligned}
& =\lambda S^{-1} A^{s} S \\
& =\lambda S^{-1} S A S^{-1} S \\
& =\lambda A
\end{aligned}
$$

Similarly we have to prove the same for χ_{s}-skew symmetric.
Corollary 2.2. Let $S \in S_{n}$ and $S^{2}=I$. If A is an $n \times n$ matrix and it is χ_{s}-symmetric (χ_{s}-skew symmetric), then A^{s} is also.
Proof. A is χ_{s}-symmetric, if $\chi_{X_{s}}(A)=A \Rightarrow A^{s} S A^{-1}=S$.

$$
\begin{aligned}
\left(A^{s}\right)^{s} S\left(A^{s}\right)^{-1} & =A S\left(A^{s}\right)^{-1} \\
& =S^{-1} A^{s} S S\left(A^{s}\right)^{-1} \\
& =S^{-1} A^{s}\left(A^{s}\right)^{-1} \\
& =S^{-1} \\
& =S
\end{aligned}
$$

Similarly we have to prove the same for χ_{s}-skew symmetric.
Remark 2.3. If A is an $n \times n$ matrix and it is χ_{s}-symmetric, then $\left(A+A^{s}\right)$ and $A^{s} A$ are not.
Theorem 2.4. If A and B are χ_{s}-symmetric (χ_{s}-skew symmetric) with same size, then $(a) . A+B$ and $(b) . A-B$ are also.
Proof. A is χ_{s}-symmetric, if $\chi_{s}(A)=A \Rightarrow S^{-1} A^{s} S=A$.
(a) $S^{-1}(A+B)^{s} S=S^{-1}\left(A^{s}+B^{s}\right) S$

$$
=\left(S^{-1} A^{s}+S^{-1} B^{s}\right) S
$$

$$
=S^{-1} A^{s} S+S^{-1} B^{s} S
$$

$$
=(A+B)
$$

(b) $S^{-1}(A-B)^{s} S=S^{-1}\left(A^{s}-B^{s}\right) S$

$$
=\left(S^{-1} A^{s}-S^{-1} B^{s}\right) S
$$

$$
=S^{-1} A^{s} S-S^{-1} B^{s} S
$$

$$
=(A-B)
$$

Similarly we have to prove the same for χ_{s}-skew symmetric.

Theorem 2.5. Let A be an $n \times n$ matrix and it is χ_{s}-orthogonal, then (a). $-A$ and (b). A^{-1} are, also χ_{s}-orthogonal.
Proof. A is χ_{s}-orthogonal, if $A^{s} S A=S$.
(a) $(-A)^{s} S(-A)=A^{s} S A$

$$
\begin{aligned}
& =S A^{-1} S^{-1} S A \\
& =S A^{-1} A \\
& =S
\end{aligned}
$$

Therefore $-A$ is χ_{s}-orthogonal
(b) $\left(A^{-1}\right)^{s} S A^{-1}=(A s)^{-1} S A^{-1}$

$$
\begin{aligned}
& =\left(S A^{-1} S^{-1}\right)^{-1} S S^{-1} A^{s} S \\
& =\left(\left(S A^{-1}\right) S^{-1}\right)^{-1} A^{s} S \\
& =\left(S^{-1}\right)^{-1}\left(S A^{-1}\right)^{-1} A^{s} S \\
& =S\left(A^{-1}\right)^{-1} S A^{s} S \\
& =S A S A^{s} S \\
& =S A S S A^{-1} S^{-1} S \\
& =S A A^{-1} \\
& =S
\end{aligned}
$$

Therefore A^{-1} is χ_{s}-orthogonal.
Corollary 2.6. Let $S \in S_{n}$ and $S^{2}=I$. If A is an $n \times n$ matrix and it is χ_{s}-orthogonal, then (a). A^{s} and (b). AA A^{s} are also.
Proof. A is χ_{s}-orthogonal, if $A^{s} S A=S$.
(a) $\left(A^{s}\right)^{s} S\left(A^{s}\right)=A S\left(A^{s}\right)$

$$
\begin{aligned}
& =A S S A^{-1} S^{-1} \\
& =A A^{-1} S^{-1} \\
& =S^{-1} \\
& =S
\end{aligned}
$$

(b) $\left(A A^{s}\right)^{s} S\left(A A^{s}\right)=\left(A^{s}\right)^{s} A^{s} S A A^{s}$

$$
\begin{aligned}
& =A A^{s} S A A^{s} \\
& =A S A^{-1} S^{-1} S A S A^{-1} S^{-1} \\
& =A S A^{-1} A S A^{-1} S^{-1} \\
& =A S S A^{-1} S^{-1} \\
& =A A^{-1} S^{-1} \\
& =S^{-1} \\
& =S
\end{aligned}
$$

Jaikumar, K. Aarthy, S. Sindhu, K.

Theorem 2.7. Product of two χ_{s}-orthogonal matrix is also χ_{s}-orthogonal.
Proof. Let A and B are χ_{s}-orthogonal. Then by the definition $A^{s} S A=S$ and $B^{s} S B=S$.

$$
\begin{aligned}
\Rightarrow(A B)^{s} S(A B) & =B^{s} A^{s} S A B \\
& =S B^{-1} S^{-1} S A^{-1} S^{-1} S A B \\
& =S B^{-1} A^{-1} A B \\
& =S(A B)^{-1} A B \\
& =S
\end{aligned}
$$

Therefore AB is χ_{s}-orthogonal.
Lemma 2.8. Let $S \in S_{n}$ and A is an $n \times n s$-normal, χ_{s}-orthogonal with -1 $\in \sigma(A)$. Then there exist χ_{s}-orthogonal $P, Q \in M_{n}(C)$ such that P is positive definite, Q is s-unitary P and Q commute, and $A=P Q$.

Lemma 2.9, Let $S \in S_{n}$ and A is an $n \times n$-normal, χ_{s}-orthogonal with $-1 \in$ $\sigma(A)$.
(a) Then there exist s-hermitian χ_{s}-skew symmetric $P_{1}, Q_{1} \in M_{n}(C)$ such that P_{1} and Q_{1} commute and $A=e^{P_{1}+i Q_{1}}$.
(b) A is positive definite if and only if there exists a s-hermitian χ_{s}-skew symmetric $P \in M_{n}(C)$ such that $A=e^{P}$.
(c) If A is s-unitary, then there exists a s-hermitian χ_{s}-skew symmetric $Q \in$ $M_{n}(C)$ such that $A=e^{i Q}$.

Corollary 2.10. Let $S \in S_{n}$ and A is an $n \times n$, χ_{s}-orthogonal matrix. Then A is s-hermitian and positive definite if and only if there exists a s-hermitian χ_{s}-skew symmetric $P \in M_{n}$ such that $A=e^{P}$.
Corollary 2.11. Let Q be a $n \times n$, s-hermitian χ_{s}-skew symmetric matrix, then $A \bar{A}^{s}=e^{Q}$.

Theorem 2.12. Let $S \in S_{n}$ and A is an $n \times n, \chi_{s}$-orthogonal matrix. Then there exist χ_{s}-orthogonal $P, V \in M_{n}$, with P be positive definite and V is s-unitary such that $A=P V$.

Theorem 2.13. Let $S \in S_{n}$ be given. Let $Q \in M_{n}$ be s-orthogonal, and set $U \equiv Q S Q^{s}$ and $V \equiv Q A Q^{s}$. Then
(a) An $n \times n$ matrix A is χ_{s}-orthogonal $\Leftrightarrow V^{s} U V=U$.
(b) An $n \times n$ matrix A is χ_{s}-symmetric $\Leftrightarrow V^{s} U V^{-1}=U$.
(c) An $n \times n$ matrix A is χ_{s}-skew symmetric $\Leftrightarrow V^{s} U V^{-1}=-U$.

Proof.

(a) $V^{s} U V=U$

$$
\begin{array}{lr}
\Leftrightarrow & \left(Q A Q^{s}\right)^{s} Q S Q^{s}\left(Q A Q^{s}\right)=Q S Q^{s} \\
\Leftrightarrow & {\left[(Q A) Q^{s}\right]^{s} Q S Q^{s} Q A Q^{s}=Q S Q^{s}} \\
\Leftrightarrow & \left(Q^{s}\right) y(Q A)^{s} Q S A Q^{s}=Q S Q^{s} \\
\Leftrightarrow & Q A^{s} Q^{s} Q S A Q^{s}=Q S Q^{s} \\
\Leftrightarrow & Q A^{s} S A Q^{s}=Q S Q^{s} \\
\Leftrightarrow & A^{s} S A=S
\end{array}
$$

$$
\text { (b) } V^{s} U V^{-1}=U \quad \Leftrightarrow \quad\left[Q A Q^{s}\right]^{s} Q S Q^{s}\left[Q A Q^{s}\right]^{-1}=Q S Q^{s}
$$

$$
\Leftrightarrow \quad\left[(Q A) Q^{Q^{s}}\right]^{s} Q S Q^{s}\left[(Q A) Q^{s}\right)^{-1}=Q S Q^{s}
$$

$$
\Leftrightarrow \quad\left(Q^{s}\right)^{s}(Q A)^{s} Q S Q^{s}\left[\left(Q^{s}\right)^{-1}(Q A)^{-1}=Q S Q^{s}\right.
$$

$$
\Leftrightarrow \quad Q A^{s} Q^{s} Q S Q^{s}\left[\left(Q^{s}\right)^{-1} A^{-1} Q^{-1}\right]=Q S Q^{s}
$$

$$
\Leftrightarrow \quad Q A^{s} S Q^{s}\left(Q^{s}\right)^{-1} A^{-1} Q^{-1}=Q S Q^{s}
$$

$$
\Leftrightarrow \quad Q A^{s} S A^{-1} Q^{-1}=Q S Q^{-1}
$$

$$
\Leftrightarrow \quad A^{s} S A^{-1}=S
$$

$$
\text { (c) } V^{s} U V^{-1}=-U \quad \Leftrightarrow \quad\left[Q A Q^{s}\right]^{s} Q S Q^{s}\left[Q A Q^{s}\right]^{-1}=-Q S Q^{s}
$$

$$
\left.\Leftrightarrow \quad\left[(Q A) Q^{s}\right)^{s}\right]^{s} Q S Q^{s}\left[(Q A) Q^{s}\right]^{-1}=-Q S Q^{s}
$$

$$
\Leftrightarrow \quad\left(Q^{s}\right)^{s}(Q A)^{s} Q S Q^{s}\left[\left(Q^{s}\right)^{-1}(Q A)^{-1}\right]=-Q S Q^{s}
$$

$$
\Leftrightarrow \quad Q A^{s} Q^{s} Q S Q^{s}\left[\left(Q^{s}\right)^{-1} A^{-1} Q^{-1}\right]=-Q S Q^{s}
$$

$$
\Leftrightarrow \quad Q A^{s} S Q^{s}\left(Q^{s}\right)^{-1} A^{-1} Q^{-1}=-Q S Q^{s}
$$

$$
\Leftrightarrow \quad Q A^{s} S A^{-1} Q^{-1}=-Q S Q^{-1}
$$

$$
\Leftrightarrow \quad A^{s} S A^{-1}=-S
$$

REFERENCES

[1] Anna Lee, Secondary symmetric, skew symmetric and orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 63-70.
[2] Anna Lee, On s-symmetric, s-skew symmetric and s-orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 61-76.
[3] Ma. Nerissa M. Abara, Dennis I. Merino and Agnes T. Paras, ϕ_{s}-Orthogonal Matrices. Linear algebra and its Applications, 432(2010), 2834-2846.
[4] S. Krishnamoorthy and K. Jaikumar, Secondary orthogonal similarity of a real matrix and its secondary, International Journal of Mathematics and Soft Computing, 2(1)(2012), 51-55.
[5] S. Krishnamoorthy and K. Jaikumar, On s-orthogonal matrices. Global Journal of Computational Science and Mathematics, 1(1)(2011), 1-8.

