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Abstract:  In this paper we, introduced the concept of χ
s
-orthogonal matrices 

and extended some results of Abara et al, [3] in the context of secondary 
transpose.
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1. INTRODUCTION AND PRELIMINARIES

The concept of secondary transpose and related matrices was initiated by [1, 2]. 
An n × n matrix A is said to be s-symmetric if As = A; an A is said to be s-skew 
symmetric if As = –A; an A is s-normal if AA =s sA A ; an χ

s
-orthogonal if 

As = A–1; and an A is said to be s-unitary if sA = -A 1  [4, 5]. Here we 
introduce the matrix, namely χ

s
-orthogonal and derived some results related to 

χ -orthogonal matrices. An n × n non-singular matrix A is said to χ
s
-orthogonal, 

if χ
s
(A) = A–1, where χ

s
(A) = S–1AsS and S satisfies the condition S2 = ± I; an A 

is said to be χ
s
-symmetric if χ

s
(A) = A; and an A is called χ

s
-skew symmetric 

if χ
s
(A) = –A.

Remark 1.1. Let A be an n × n matrix and it is said to be χ
s
-orthogonal, if one

of the following conditions must hold

(i) S–1AsS = A–1

(ii) AsSA = S
(iii) AsS = SA–1

(iv) As = SA–1S–1 = S(SA)–1

2. χ
s
-ORTHOGONAL MATRICES

Theorem 2.1. Let A be an n × n matrix and it is χ
s
-symmetric (χ

s
-skew

symmetric), then so are (a). A–1 (b). –A and (c). lA (l is an arbitrary constant). 
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Proof. A is χ
s
-symmetric, if χ

s
(A) = A ⇒ S–1 AsS = A.

(a) S–1(A–1)sS = S–1(As)–1S
= S–1(SAS–1)–1S
= S–1[(SA)S–1]–1S
= S–1SA–1S–1S
= A–1

(b) S–1(–A)sS = S–1(–As)S
= –S–1AsS
=–A

(c) S–1(lA)sS = S–1lAsS
= lS–1AsS
= lS–1SAS–1S
= lA

Similarly we have to prove the same for χ
s
-skew symmetric.

Corollary 2.2. Let S ∈ S
n
 and S2 = I. If A is an n × n matrix and it is

χ
s
-symmetric (χ

s
-skew symmetric), then As is also.

Proof. A is χ
s
-symmetric, if χ

s
(A) = A ⇒ AsSA–1 = S.

(As)sS(As)–1 = AS(As)–1

= S–1AsSS(As)–1

= S–1As(As)–1

= S–1

= S
Similarly we have to prove the same for χ

s
-skew symmetric.

Remark 2.3. If A is an n × n matrix and it is χ
s
-symmetric, then (A+As) and

AsA are not.

Theorem 2.4. If A and B are χ
s
-symmetric (χ

s
-skew symmetric) with same

size, then (a). A + B and (b). A – B are also.

Proof. A is χ
s
-symmetric, if χ

s
(A) = A ⇒ S–1AsS = A.

(a) S–1(A + B)sS = S–1(As + Bs)S
= (S–1As + S–1Bs)S
= S–1 AsS + S–1BsS
= (A + B)

(b) S–1(A – B)sS   = S–1(As – Bs)S
= (S–1 As – S–1Bs)S
= S–1AsS – S–1BsS
= (A – B)

Similarly we have to prove the same for χ
s
-skew symmetric.
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Theorem 2.5. Let A be an n × n matrix and it is χ
s
-orthogonal, then (a). –A

and  (b). A–1 are, also χ
s
-orthogonal.

Proof. A is χ
s
-orthogonal, if AsSA = S.

(a) (–A)sS(–A) = AsSA
= SA–1S–1SA
= SA–1A
= S

Therefore –A is χ
s
-orthogonal

(b) (A–1)sSA–1 = (As)–1 SA–1

= (SA–1S–1)–1SS–1AsS

= ((SA–1)S–1)–1AsS

= (S–1)–1(SA–1)–1AsS

= S(A–1)–1SAsS

= SASAsS

= SASSA–1S–1S

= SAA–1

= S

 Therefore A–1 is χ
s
-orthogonal.

Corollary 2.6. Let S ∈ S
n
 and S2 = I. If A is an n × n matrix and it is

χ
s
-orthogonal, then (a). As and (b). AAs are also.

Proof. A is χ
s
-orthogonal, if AsSA = S.

(a) (As)sS(As) = AS(As)
= ASSA–1S–1

= AA–1S–1

= S–1

= S
(b) (AAs)sS(AAs) = (As)sAsSAAs

= AAsSAAs

= ASA–1S–1SASA–1S–1

= ASA–1ASA–1S–1

= ASSA–1S–1

= AA–1S–1

= S–1

= S
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Theorem 2.7. Product of two χ
s
–orthogonal matrix is also χ

s
-orthogonal.

Proof. Let A and B are χ
s
-orthogonal. Then by the definition AsSA = S and 

BsSB = S.

⇒ (AB)sS(AB) = BsAsSAB

= SB–1S–1SA–1S–1SAB

= SB–1A–1AB

= S(AB)–1AB

= S
Therefore AB is χ

s
-orthogonal.

Lemma 2.8. Let S ∈ S
n
 and A is an n × n s-normal, χ

s
-orthogonal with –1 

∈ s(A). Then there exist χ
s
–orthogonal P, Q ∈ M

n
(C) such that P is positive

definite, Q is s-unitary P and Q commute, and A = PQ.

Lemma 2.9, Let S ∈ S
n
 and A is an n × n s-normal, χ

s
-orthogonal with –1 ∈

s(A).
(a) Then there exist s-hermitian χ

s
-skew symmetric P1,Q1 ∈ M

n
(C) such that

P1 and Q1 commute and A eP iQ= +1 1 .
(b) A is positive definite if and only if there exists a s-hermitian χ

s
-skew

symmetric P ∈ M
n
(C) such that A = eP.

(c) If A is s-unitary, then there exists a s-hermitian χ
s
-skew symmetric Q ∈

M
n
(C) such that A = eiQ.

Corollary 2.10. Let S ∈ S
n
 and A is an n × n, χ

s
-orthogonal matrix. Then A

is s-hermitian and positive definite if and only if there exists a s-hermitian  
χ

s
-skew symmetric P ∈ M

n
 such that A = eP.

Corollary 2.11. Let Q be a n × n, s-hermitian χ
s
-skew symmetric matrix, then

AA es Q= .

Theorem 2.12. Let S ∈ S
n
 and A is an n × n, χ

s
-orthogonal matrix. Then there

exist χ
s
-orthogonal P, V ∈ M

n 
, with P be positive definite and V is s-unitary

such that A = PV.

Theorem 2.13. Let S ∈ S
n
 be given. Let Q ∈ M

n
 be s-orthogonal, and set

U ≡ QSQs and V ≡ QAQs. Then
(a) An n × n matrix A is χ

s
-orthogonal ⇔ VsUV = U.

(b) An n × n matrix A is χ
s 
-symmetric ⇔ VsUV–1 = U.

(c) An n × n matrix A is χ
s 
-skew symmetric ⇔ VsUV–1 = –U.
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Proof.
(a) VsUV = U ⇔ (QAQs)sQSQs(QAQs) = QSQs

⇔ [(QA)Qs]sQSQsQAQs = QSQs

⇔ (Qs)y(QA)sQSAQs = QSQs

⇔ QAsQsQSAQs = QSQs

⇔ QAsSAQs = QSQs

⇔ AsSA = S
(b) VsUV–1 = U ⇔ [QAQs]sQSQs[QAQs]–1 = QSQs

⇔ [(QA)Qs]sQSQs[(QA)Qs)–1 = QSQs

⇔ (Qs)s(QA)sQSQs[(Qs)–1(QA)–1 = QSQs

⇔ QAsQsQSQs[(Qs)–1A–1Q–1] = QSQs

⇔ QAsSQs(Qs)–1A–1Q–1 = QSQs

⇔ QAsSA–1Q–1 = QSQ–1

⇔ AsSA–1 = S
(c) VsUV–1 = -U ⇔ [QAQs]sQSQs[QAQs]–1 = –QSQs

⇔ [(QA)Qs)s]sQSQs[(QA)Qs]–1 = –QSQs

⇔ (Qs)s(QA)sQSQs[(Qs)–1(QA)–1] = –QSQs

⇔ QAsQsQSQs[(Qs)–1 A–1Q–1] = –QSQs

⇔ QAsSQs(Qs)–1 A–1Q–1 = –QSQs

⇔  QAsSA–1Q–1 = –QSQ–1

⇔  AsSA–1 = –S
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