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Abstract: We consider a dynamical problem for semi-infinite 
viscothermoelastic semi infinite cylinder loaded mechanically and thermally 
and investigated the behaviour of variations of displacements, temperatures 
and stresses. The problem has been investigated with the help of five theories 
of the generalized viscothermoelasticity by using the Kelvin – Voigt model. 
Laplace transformations and Hankel transformations are applied to equations 
of constituent relations, equations of motion and heat conduction to obtain 
exact equations in transformed domain. Hankel transformed equations are 
inverted analytically and for the inversion of Laplace transformation we 
apply numerical technique to obtain field functions. In order to obtain field 
functions i.e. displacements, temperature and stresses numerically we apply 
MATLAB software tools. Numerically analyzed results for the temperature, 
displacements and stresses are shown graphically.

Keywords: Kelvin–Voigt model; Mechanical and Thermal loads; Green and 
Naghdi Theory; Hankel transformation; Field functions.

1. INTRODUCTION
Nowacki [1] has thoroughly established the theory of elasticity, classical 
coupled thermoelasticity, non–classical generalized thermoelasticity and 
waves in solids of thermoelasticity.  Biot [2] has studied the theory of coupled 
thermoelasticity of classical one and to remove the inconsistency in the 
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classical uncoupled theory that there may have no effect on the temperature to 
change elastic outcome. In classical theory, it was arrived to reality that a part 
of the result of the energy equation tends to infinity (large) when homogeneous 
elastic medium subjected to thermal or mechanical instability, this results that 
the temperature, stresses and displacement fields are felt at an infinite (large) 
distance from the source of instability instantaneously. This comes to result 
that the solution has an infinite velocity of proliferation, which is impossible 
physically. To overcome this problem of infinite velocity of proliferation Lord 
and Shulman [3] have made many attempts to amend the Fourier law of heat 
conduction to acquire a hyperbolic differential equation of heat conduction. 
Green and Lindsay [4] adapted entropy production inequality derived from 
constituent relations for stresses and generalized by introducing two unlike 
relaxation times parameters constrained by inequalities t t1 0 0≥ ≥ . The 
supposition of thermoelasticity without energy dissipation (TWED), projected 
by Green and Naghdi [5] which have been illustrated by system of field 
equations, in which rate of heat flux  and temperature gradient (change) relation 
is compared to classical coupled thermoelasticity theory, which replaces the 
Fourier’s law of heat conduction. Chandrasekharaiah [6] and Tzou [7] have 
been proposed a model in which an extension of the Fourier’s law is changed 
by an estimation to a adapted Fourier’s law with two unusual time conversions, 
a phase lag of temperature gradient τθ  and a phase lag of heat flux τq . Sherif 
and El-Maghraby [8] investigated a dynamic problem of penny shaped crack 
of infinite thermoelastic solid focused on recommended temperature and 
stress distribution. Dhaliwal and Singh [9] and Graff [10] have given much 
attention to such type of problems for classical and non classical theories of 
thermoelasticity. Othman and Singh [11] studied the effect of five theories 
under the rotation of generalized micropolar thermoelastic half space. Sharma 
et al. [12] have considered the interruption due to normal and thermal point 
loads acting on half space boundary. Mukhopadhyay [13] examined the effects 
of thermal relaxation on viscothermoelastic interactions with a spherical cavity 
of periodical loading.  The viscothermoelastic relations in Kelvin – Voigt model 
type Rayleigh-Lamb wave viscoelastic plate have been studied by Sharma [14] 
to achieve amplitudes of displacements and temperature. 

The theory of Linear Viscoelasticity was thoroughly established by Bland 
[15]. A lot of mathematical models based on viscoelastic problems have been 
used by Hunter [16] and Flugge [17] that could be managed the dissipation of 
energy in vibrating solids and it was observed that internal friction produces 
decrease of energy and diffusion. Tripathi et al. [18] studied the displacements, 
temperature and stress distribution in a semi infinite cylinder.  Sharma et al. [19] 
investigated the generalized homogenous isotropic magneto viscothermoelastic 
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solid half space with strip loading. Sharma et al. [20] studied the deformation 
of mechanical and thermal loadings of semi infinite cylinder in the framework 
of coupled theory of viscothermoelasticity. Samia [21] had explored the cause 
of initial stress due to hydrostatic and the gravity field on a fiber-reinforced 
medium of thermoelasticity with an internal heat source. 

As per knowledge of the authors no exact and systematic learning on the 
outcome of mechanical and thermal variations on two and three dimensional 
vibrations of conducting viscoelastic cylindrical structures is available in the 
literature. Keeping in view the above facts, the present paper is devoted to 
study the homogenous and isotropic semi infinite viscothermoelastic cylinder 
subjected to five theories of generalized thermoelasticity to present the 
variations of displacements, temperature change and stresses in considered 
boundary conditions of mechanical forces and heat sources. The partial 
differential equations have been transformed into ordinary differential 
equations by applying combination of Laplace and Hankel transforms. Hankel 
transformations are inverted analytically and inverse Laplace transformations 
are determined numerically. Analytical results have been computed numerically 
in MATLAB software tools and presented graphically for field functions i.e. 
stresses, temperature change and displacements.

2. FORMULATION OF PROBLEM

We have considered a viscothermoelastic homogenous isotropic, semi 
infinite cylinder of thick plate of height 2h and radius r defined as 
− ≤ ≤ ≤ < ∞h z h rand 0 and at initial temperature T0 in undisturbed state. 
We consider the axis of symmetry as z–axis and the origin of the coordinate 
system between lower and upper faces of the plate. The material is described 
by the Kelvin – Voigt model of the linear viscoelasticity. We consider the 
cylindrical coordinate system r z, ,ϑ( )  and all the considered quantities of 
semi infinite cylinder are independent of the coordinateϑ . The displacement 
vector u( , , ) ( , , )r z t u w= 0 and temperature T(r, Z, t) have been considered 
for analysis. All the considered functions i.e. displacements, temperatures and 
stresses will depend on r, z, t only. The constitutive relations and governing 
equations for viscothermoelastic semi–infinite cylinder in the framework of 
five theories i.e. (CT, LS, GL, GN and C–T) of generalized thermoelasticity 
are given by (Nowacky [2] and Dhaliwal and Singh [9]) as
Stress –strain temperature relations

σ µ λ β δr r k
u
r

e T t T
t

=
∂
∂

+ − +
∂
∂









2 1 2

* * * (1)
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The basic governing equations of motion and heat conduction for semi–infinite 
generalized viscothermoelastic cylinder in the absence of body forces along 
with heat sources are given by (Nowacky [2] and Dhaliwal and Singh [9]) as 
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Here, T(r, z, t) is absolute temperature, e is cubical dilatation, ρ  is density 
mass, α0, α1 are viscoelastic relaxation times, λ and μ are Lame’s constants, 
λ*and μ*are viscoelastic parameters, α

T is the coefficient of linear thermal 
expansion, C0 is specific heat at  constant strain, K is thermal conductivity, 
( ; , )δik i =1 2 is Kronecker delta. v0, t0, t1 are relaxation times, n0, n1, n2 are 
dimensional parameters.

The equations (4)–(6) are the field equations for semi-infinite generalized 
viscothermalelastic cylinder valid to classical and non classical coupled 
theories, and their generalizations are given below:
1. The coupled viscothermalelasticity (CT theory) for semi-infinite cylinder
under conditions:
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n n v t t n1 2 0 0 1 01 0 0= = = = = =, , (8)

The equation (4) to (6) becomes
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2. Lord-Shulman (LS theory) for semi-infinite cylinder under conditions:

n n n v t t0 1 2 0 1 01 0 0= = = = = >, ,  (12)

where t0 is relaxation time
Equations (4) and (5) will remain same as equations (9) and (10) but 

equation (6) becomes:
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3. Green – Lindsay (GL theory) for semi-infinite cylinder under conditions:

n n n v t t0 1 2 0 1 00 1 0 0= = = = ≥ >, , , (14)

Equations (4) and (5) will remain same and equation (6) becomes,
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4. The equation of generalized semi-infinite viscothermoelastic cylinder
without energy dissipation, Green–Nagdhi (GN theory) under conditions

n t n v t n0 0 1 0 1 21 0 0= = = = = >, , (16)

Equations (4) and (5) will remain same as equations (9) and (10) and equation 
(6) becomes,
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5. Chandrasekharaiah–Tzou theory (C–T theory) is modified classical
viscothermoelasticity model in which Fourier’s law of heat conduction is
specified by the equation if

n n n v t tq q0 1 2 0 0 11 0 0 0 0= = = = > = > < < =, , , ,τ τ τ τθ θ
 (18)

here, τ τθ , q  are phase lag of temperature gradient and phase lag of heat flux 
respectively. Chandrasekharaiah–Tzou (C–T) theory is extension of LS model 
in sense that both τ τθ and q  that have arrived into the formulation of an 
initial boundary value problem depend on the Taylor series approximation of 
a modified Fourier law of heat conduction.

Equation (4) and (5) will remain same as (9) and (10) and equation (6) 
becomes,
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3. INITIAL AND BOUNDARY CONDITIONS
Initially the medium is assumed to be at rest and undisturbed, both mechanically 
and thermally, so that the initial conditions are given as:

u r z
t

u r z w r z
t

w r z( , , ) ( , , ), ( , , ) ( , , )0 0 0 0 0 0= =
∂
∂

= =
∂
∂

T r z
t
T r z h z h r( , , ) ( , , ) ,0 0 0 0= =

∂
∂

− ≤ ≤ ≥; (20)

The surface of semi-infinite viscothermoelastic cylinder subjected to 
mechanical load acting on the origin, mathematically this provides us 

σ σz z f r z t r a h z h= ≤ ≤ − ≤ ≤0 0( , , ); and  (21)

σr z r h z h= ≤ < ∞ − ≤ ≤0 0; and

T and= ≤ < ∞ − ≤ ≤0 0; r h z h

The surface of semi-infinite viscothermoelastic cylinder subjected to thermal 
load acting on the origin, mathematically this provides us

σz z r h z h= ≤ < ∞ − ≤ ≤0 0; and (22)
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σr z r h z h= ≤ < ∞ − ≤ ≤0 0; and

∂
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= ≤ ≤ − ≤ ≤
T
z

f r z t r a h z hθ0 0( , , ); and

where σ θ0 0and  are constants.

4. SOLUTION OF PROBLEM

We define following non-dimensional quantities to remove the complexity of 
the problem so that the equations become handy to solve
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Here for our convenience the primes have been suppressed. On substituting 
the above non – dimensional quantities of equations (23) in equations (1)–(6) 
via equation (7) we obtain the following equations:
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We classify Laplace transformation and Hankel transformation by the 
equations given below:
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Upon using above two equations of transformation from equations 
(29) and (30) to equations (24) – (28), the non–vanishing solution of
resulting equations are
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



= +









 = +






− − −
^

* *, ,p v
n

p v t
n

p



 = +









 = ′−τ δ τ0

0

1
0 1

1
0, n

n
t pk

Here p is Laplace transform parameter and α is Hankel transform parameter.
On solving equation (33) we get

D AD BD C U R Z6 4 2 0− + −{ } ( ) = , ,τ (35)

where

A = − −γ γ γ γ γ γ γ11 22 33 12 21 32 23+ + (36)   

B = + + − − + +γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ11 22 22 33 33 11 12 23 31 21 32 13 11 22 32 13 311 (37)

C = +γ γ γ γ γ γ11 22 33 13 31 22 (38)

Similarly we can have the solution for W  and θ
~

.

D AD BD C W Z Z p6 4 2 0− + −( ){ } =
( , , ), ( , , )α τ θ α (39)

Factors of equation (35) are given by:

( )( )( ) , ,D m D m D m U R Z p2
1
2 2

2
2 2

3
2 0− − −( ) ( ) = (40)

The solution of the equations (40) is given by
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U A m Z jj j
j

= =
=
∑ cosh ; , ,

1

3

1 2 3  (41)

Similarly we can have the solutions for
W  and θ

~
. ,

W A V m Z jj j j
j

= =
=
∑ sinh ; , ,

1

3

1 2 3  (42)

θ= =
=

∑ A S m Z jj j j
j

cosh ; , ,
1

3

1 2 3   (43)

where
m m jj j= ± =; ( , , )1 2 3 are roots of equation (40) and A jj ; ( , , )=1 2 3 are 
arbitrary constants. 

V
m

m m
jj

j

j j

=
− +( )

− + + +( ) −
γ γ γ γ γ

γ γ γ γ γ γ
21

2
33 21 31 23

4 2
33 22 32 23 22 33

; ==1 2 3, ,  (44)

S
m

m m
jj

j

j j

=
−( ) +

− + + +( ) −

2
32 21 31 31 22

4 2
33 22 32 23 22 33

γ γ γ γ γ

γ γ γ γ γ γ
; ==1 2 3, ,  (45)

Using equations (41)–(43) in equations (31)–(32), the stresses are given as

τ γ γ γZ Z j j j j j
j

m V S A m z= + +( )
=
∑41 42 43

1

3

. cosh  (46)

τ γ αR Z j j
j

jA m z V= −( )
=
∑44

1

3

1sinh (47)

where  γ α α δ γ δ γ β τ γ δ α41 0
2

42 0 43 0 1 44
2

11 2= − = = =p p p p* * * *( ), , , (48)

Taking inverse Hankel transformation of equations (41)–(43) and (46)–(47) 
we obtain

U A m Z J R dj j
j

=










=

∞

∑∫ cosh ( )
1

3

1
0

α α (49)
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W A V m Z J R dj j j
j

=










=

∞

∑∫ sinh ( )
1

3

0
0

α α α (50)

θ α α α=










=

∞

∑∫ A S m Z J R dj j j
j

cosh ( )
1

3

0
0

 (51)

τ γ γ γ α α αZ Z j j j j j
j

m V S A m z J R d= + +( )









=

∞

∑∫ 41 42 43
1

3

0
0. cosh ( )  (52)

τ γ α α αR Z j j
j

jA m z V J R d= −( )









=

∞

∑∫44
1

3

0
11sinh ( ) (53)

where A jj , , ,=1 2 3 are unknowns to be determined.
Upon applying the inverse Hankel transform to the boundary conditions 

given in equations (21) and (22) via (51) to (53) by using lengthy and straight 
forward calculations, we get equations as:

Case I: Mechanical load applied on the surface of Semi Infinite Cylinder

A
A
A

M M M
M M M
M M M

1

2

3

11 12 13

21 22 23

31 32 33

1
0














=
















− σ ff Z p
i j

( , , )
; , , , .

α
0
0

1 2 3
















=  (54)

Case II: Thermal load applied on the surface of Semi Infinite Cylinder

A
A
A

M M M
M M M
M M M

1

2

3

11 12 13

21 22 23

31 32 33
















=

′ ′ ′

















−11

0

0
0 1 2 3

θ αf Z p
i j

( , ,
; , , , .

















=  (55)

where M m V S m Z11 41 42 1 1 43 1 1= + +( )( )cosh ;γ γ γ α

M m Z V21 1 11= −sinh ( );α

M S m Z31 1 1=α cosh ;

′ =M S m m Z31 1 1 1α sinh (56)
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The elements M M M M M M M M12 13 22 23 32 33 32 33, , , , , , ,′ ′ can be written from 
M M M M11 21 31 31, , , ′ by replacing M M M M11 21 31 31, , , ′ and m V S1 1 1, , with .

5. INVERSE OF DOUBLE TRANSFORMS

In order to obtain the solution in physical domain, we have to make inverse 
transformations of equations (54) to (55). To remove the complication of the 
solution in the Laplace transformation in physical domain we find the inversion 
of Laplace transformation which is obtained by using the Gaver – Stehfast 
algorithm [22, 23]. The work completed which have been done by Widder [24] 
who extended an inversion operator for Laplace transform. Gaver–Stehfast 
[22, 23] modified this operator and derived the formula 

f t D j k F j
j

k

( ) ln ( , ) ln
= 








=
∑2 2
1τ τ

(57)

with  

D j k n n
M n n n j n n j

j M
M

n m

j M

( , ) ( ) ( )!
( )! !( )!( )!( )!

min ( ,

= −
− − − −

+

=

1 2
1 2

))

∑ (58) 

where k is an even integer, whose value depends on the word length the 
computer used. M k m=

2
and is the integer part of the ( )j +1

2
. The optimal 

value of k was chosen as described in Stehfast algorithm [23], for the rapid 
convergence of results with the desired exactness. The technique of numerical 
integration Press et al. [25] has been used with the help of variable step size 
used to evaluate the integrals engaged in related equations. Computer analyzed 
and simulated results have been obtained by the use of MATLAB software 
tools.  

6. NUMERICAL RESULTS AND DISCUSSION
With the view to demonstrate and compare the analytical results which are 
achieved in the previous sections in the context of the coupled theory (CT), 
Lord – Shulman theory (LS), Green – and Lindsay theory (GL), Green – 
Naghdi theory (GN) and Chandrasekharaiah – Tzou theory (C–T) theories 
of visothermoelasticity, we propose some numerical computations. For 
mechanical and thermal loading we are supposed to take 

f R Z F a R F
H a R H( , , ) ( ) ( )
( ) ( )τ σ τ

θ τ= −
−

0

0

for mechanical loads
for thermmal loads





(59)
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Here σ θ0 0and are constants. On taking Laplace and Hankel 
transformations in equation (62) we get:

f Z p

a J a
p

a J a
p

( , , )

( , )

( , )α

σ α
α

θ α
α

=

0 1

0 1

for mechanical loads

for therrmal loads










(60)

We can use the relation J Z d
dZ

J Z1 0( ) ( )= − in equation (60) for similarity 
of stresses and temperature. In order to express the problem, the physical 
data of copper material has been taken for the computation purpose given by 
(Mukhopadhyay [13])

λ µ ρ= × = × = ×− − −8 2 10 4 2 10 8 950 1010 2 10 2 10 3. , . , . ,Nm Nm kg m

ε αT T K K Cal m s K Z h a= = × = × = = =− − − −0 00265 1 0 10 1 13 10 1 18 2 1 1 1. , . / , . , ,

α α ω σ θ0 1
13 11 1

0 0 06 8831 10 1 11 10 300 1= = × = × = = =− −. , . , , ,*s s T K

The computer analyzed results of field functions i.e. for mechanical load 
and thermal loads in the context of the CT, LS, GL, GN and C–T theories 
of visothermoelasticity. Fig. 1 and Fig. 2 are drawn for displacements versus 
non dimensional radius, Fig. 3 to Fig. 5 for mechanical loads (i.e. stresses and 
temperature versus radius) and Fig. 6 to Fig. 8 for thermal loads (i.e. stresses 
and temperature change versus radius). It is observed from Fig. 1 that initially 
the variation of radial displacement is high and with increase in the value of 
(R) the vibrations of variation go on decreasing and die out. It is also revealed
from Fig. 2 that vibrations of variation are reverse of Fig. 1. The variations in
Fig. 2 are very low from mean position at (R = 0) and with increase in radius
from origin the variations go on increasing and die out.

Figs. 3 to 5 have been plotted for temperature and stresses versus non–
dimensional radius (R) for different theories of generalized viscothermoelasticity 
for mechanical loadings. It is inferred from the Fig. 3 that the variation of 
temperature is largest at (R = 0) and with increasing value of (R) the variation 
of temperature go on decreasing with increase in the value of (R). Fig. 4 has 
been plotted for radial stress versus non – dimensional radius (R). It is examined 
from Fig. 4 that the initially variation is highest at origin and lowest at (R = 
2.8) and increases up to R = 3.5, after that with increase in the value of (R), 
the variations go on decreasing and die out. Fig. 5 has been plotted for axial 
stress versus radius (R). Fig. 5 revealed that initially the variations are low 
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below mean position decreases up to (R = 1.5), and increases with increasing 
value of radius (R) up to (R = 2.2), after that the variation of vibrations go on 
decreasing and die out. Figs. 6 to 8 have been plotted for temperature change 
and stresses for thermal loadings. It can be noted from Fig. 6 that initially the 
variations of temperature change is high and with increase in value of (R) the 
variations go on decreasing. It is revealed from Fig. 7 that the variations of 
radial stress ( )τRZ is highest at (R = 0) and with increase in the value of (R)

Figure 1: Radial displacement against radius (R) for different theories.

Figure 2: Axial displacement against radius (R) for different theories.
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Figure 3: Temperature against radius (R) for mechanical loads.

Figure 4: Radial stress ( )τRZ  against radius (R) for mechanical loads.

the variation go on decreasing. It can be inferred from Fig. 8 that the initially 
variation of axial stress ( )τZZ  is lowest below mean position and with increase 
in the value of (R) the variation go on increasing and die out at (R = 4.5). 

From the trends of variations of displacements, temperature and stresses, 
it is noticed that the variations are largest in case of (GN) and (C – T) theories 
of generalized thermoelasticity in all the figures. The variations in of (GN) and 
(C – T) theories of generalized thermoelasticity are close to each other. The 
nature of relaxation parameters of generalized thermoelasticity significantly 
affect characteristics and behavior of vibrations of variation of displacements, 
temperatures and stresses in contrast to coupled theory of thermoelasticity.
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Figure 5: Axial stress ( )τZZ  against radius (R) for mechanical loads.

Figure 6: Temperature change (θ) against radius (R) for thermal loads.

Figure 7: Radial stress ( )τRZ  against radius (R) for thermal loads.
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7. CONCLUDING REMARKS:

1. With the help of non dimensional quantities the simplified the system
of governing equations of motion and heat conduction of semi infinite
viscothermoelastic cylinder have been solved with the help of combination
of Laplace and Hankel transformations.

2. The problem has been investigated with the help of five theories (CT, LS,
GL, GN and C–T) of generalized viscothermoelasticity.

3. The solutions have been directly calculated without using potential
formation technique.

4. The comparison of five theories i.e. CT, LS, GL, GN and C–T of
viscothermoelasticity have been made in all the figures and noticed that
variations in case of Green and Naghdhi (GN) and Chandrasekharaiah and
Tzou (C–T) are largest and close to each other due to effect of relaxation
parameters of generalized viscothermoelasticities.

5. The inversion numerical methods used in the text are very rapid and
correct in contrast to any other method.

6. The study may be useful in studying the behaviour of mechanical and
thermal characteristics of various types of loading problems in solving
engineering problems using five theories of viscothermoelasticity and
verifying finite speeds of wave propagation. The presnt analytical and
computational results may provide information for experimental scientists
/ researchers / seismologists working in this subject and field. Study may
also find useful applications in the drawing and creation of sensors and
other sound waves in addition to bio industries.

Figure 8: Axial stress ( )τZZ  against radius (R) for thermal loads.
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