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Abstract: This paper presents a mathematical model for the formation as 
well as computation of geometric series in a novel way. Using Annamalai 
computing methoda simple mathematical model is established for analysis 
and manipulation of geometric series and summability.This new modelcould 
be used in the research fields of physics, engineering, biology, economics, 
computer science, queueing theory, and finance.In this paper, a novel 

computational model hadalso been developed such that a y ay
y
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, ( 0 1< <y ). This could be very interesting and 

informative for current students and researchers.
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1. INTRODUCTION

Geometric series played a vital role in differential and integral calculusat the 
earlier stage of developmentand still continues as an important part of the study 
in mathematics, science,management, and technology.The finite and infinite 
geometric sequence, series, andsummabilityhave important applications 
in engineering, economics, computer science, medicine, biology, physics, 
queueing theory, and finance [3, 4, 5, 8].

It is eventually understoodthat the summations offinite geometric series 
were
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and the summations of infinite geometric series were
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Geometric series can be used to convert the decimal to a fraction.

For examples, 
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2. Annamalai ComputingGeometric Series

Annamalai computing method [1] provided a novel approach for computation 
of geometric series in a new way. 
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From the above result we can further find the following summability: 
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3. Computational Modelling

The equality ax ax=  [7] was used to design the computational modelling,
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where k > 0  is an integer constant. 
From the above result it can further found the following summability:  
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CONCLUSION

In the research study, a novel technique has been introduced to form 
the generalized geometric series and computing it.Also, a novel 
computational model was also developed such that a y ay
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fields of physics, engineering, biology, economics, computer science, 
queueing theory, and finance.
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