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Abstract: In this paper the Sumudo transform is coupled with homotopy 
Perturbation Method to have the numerical solution of some 
nonlinear differential equations. The basic concept of applying such 
technique is to handled the nonlinear terms by using the he’s polynomial.
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1. INTroDucTIoN

In the literature survey we can observed the nonlinear phenomenon in many 
scientific and engineering application which are in the form of ordinary 
differential equations and partial differential equations. There are several 
techniques to solve such nonlinear ordinary differential equations and partial 
differential equations. Mahmoud S. Rawashdeh and Shehu Maitama [2] 
have introduced Natural Decomposition Method to solve nonlinear ordinary 
differential equations. There are other techniques to handle these nonlinear 
ordinary differential equations and partial differential equations. however such 
techniques needs large number of numerical computations. This paper deals 
with the method in which the Sumudo transform and homotopy Perturbation 
Method are combined to solve some nonlinear differential equations.The 
nonlinear terms that occurs in the equations are decomposed using he’s 
Polynomials.[1]

Recently hassan eltayeb and Adem Kilicman have developed the Sumudo 
Transform Method to solve the nonlinear system of partial differential 
equations and Volterra integro-differential equations.[4, 5] Jagdev Singh, 
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Devendra Kumar and Adem Kilicman [6] have introduced the combined 
homotopy Perturbation Method and Sumudu Transform to solve nonlinear 
Fractional Gas Dynamics equations.In this paper the numerical solution of 
logistic differential equation and Lokta-Volterra predator-prey model for 
the single species is obtained using the Sumudo homotopy Perturbation 
Method(ShPM).

In early 90’s watugala [3] have introduced new integral transform the 
Sumudo transform which is defined over the set of functions
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t
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Further details and properties about sumudo tranform can be seen in [7, 8, 9, 10].

1.1 Some Standard result of Sumudo Transform

In this section we assume that all the considered functions are such that their 
Sumudo tranform exists.[9]
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2. SoluTIoN of NoN-lINEAr EquATIoNS (PArT-I)

The aim of this section is to discuss the use of sumudo transform algorithm to 
solve some nonlinear differential equations. To illustrate the basic technique, 
consider the following second order non-homogeneous nonlinear differential 
equation with the given initial condition of the form

( ) ( )( ) ( )Dx t Rx t Nx t g t+ + = (2)

where x(0) = A, x΄(0) = B are constants, 
dD
dt

=
2

2  is the second order 

differential operator, R is the remaining linear operator, N is the general 
nonlinear differential operator and g(t) is a source term.
First apply the sumudo transform on both sides of the equation (2) we get,

( ) ( ) ( ) ( )Dx t Rx t Nx t g t+ +            =      (3)

Using the properties of sumudo transform we have,

( ) ( ) ( ) ( ) ( ). ( )x t x x u u g t Nx t Rx t    ′= − + − − 
20 0   (4)

Now apply inverse Sumudo transform on both sides, we get
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To find the exact solution x(t) we apply the Homotopy Perturbation Method 
for which consider ( ) ( )n
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which can be calculated by the formula
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From this last equation we have the recursive relation as
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This gives us the series solution of the given second order non-homogeneous 
nonlinear differential equation with the given initial condition.

2.1 Analysis of Method

Consider the logistic differential equation for the growth of population of 
single species of the form [12]

.dP Pr P
dt k

 
 = −
  
1 (10)

where r and k are constants and P = P(t) represents the population of species 

at time t and Pr
k

 
 −
  
1  is the per capita growth rate, k is the carrying capacity 

of the environment. Suppose that
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Apply the sumudo transform on both sides we get
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Using the properties of sumudo transform we have
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Apply the inverse sumudo transform on both sides
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( ) .PX u X X
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Now applying the classical homotopy perturbation technique for which 
consider the solution of given logistic differential equation of the form
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where H
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(ω)are the He’s polynomial which can be calculated using the 
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Continue in this way we get the series solution of the logistic differential 
equation in the form
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3. SoluTIoN of NoN-lINEAr EquATIoNS (PArT-II)

Now consider the Lokta-Volterra system which is an integrating species 
predator-prey model governed by [11, 12, 13]

[ ]dN N a bP
dt

= − (13)

[ ]dP P cN d
dt

= − (14)

where a,b,c,d are constants N = N(t), P = P(t) are the prey predator population 
at time t respectively.
Suppose that
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So that equation (13), (14) becomes
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with initial condition X(0) = δ, Y(0) = β
Apply the sumudo transform on both sides we get
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Using the properties of sumudo transform we have
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Apply the inverse sumudo transform on both sides
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Similarly we have
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1 1 

Let δ = 1.5, β = 0.8, α = 1

( ).( .)X u X Yω −   = + −   
11 5 1 
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( ).( .)X u Y Xω −   = + −   
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Now applying the classical homotopy perturbation technique for that consider 
the solution of the form
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where H
n
(ω)are the He’s polynomial which can be calculated using the formula
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continue in this way we get the series solution of the form
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4. coNcluSIoN

This paper provides a new technique for the solution of nonlinear equations. 
Also we have obtained the series solution of logistic differential equation and 
Lokta-Volterra system which is an integrating species predator-prey model 
using this technique. The advantage of this technique is to handle the nonlinear 
term and reduce the computational work.
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