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Abstract This manuscript presents a procedure in the direction of get the 
emulsion of dynamic pattern in place of HIV infection of CD4+T cells. Intended 
for methodical mix of non linear differential equation, we are by Kamal 
Transform Adomian Decomposition Method (KTADM). This procedure gives 
consistent as a consequence effectual suspension of HIV model.

Keywords: Kamal Transform, Kamal Transform Adomian Decomposition 
Method (KTADM), HIV infection, CD4+ T cells.

1. INTRODUCTION:

HIV (human immune deficiency virus) is an uncommon key up of retrovirus 
called lent virus to facilitate causes acquired immunodeficiency syndrome 
(AIDS)[1].HIV destroys the CD4+T cells lymphocytes of the immune system, 
which comfort the immune coordination dispute rancid infections. In the cell, 
HIV produces virus particles. These HIV viruses convert viral RNA into DNA 
and then making many RNA. With no treatments, HIV advances stylish stages
along with three stages of HIV infections are: Acute HIV infection, Clinical 
latency and AIDS (acquired immune deficiency syndrome). Toward answer 
the typical in support of HIV infection of CD4+ T cells [2,6].we are fretful in 
the direction of open out the treatment of the reasoned KTADM.

2. PRELIMINARIES & DEFINITIONS

2.1 Kamal Transform

The Kamal transform is denoted by operator K (.) and Kamal transform of f(t) 
is defined by the integral equation [7]:

K G tf t v f t e dt and k v k
t
v( )( ) = ( ) = ( ) ≥ ≤ ≤

∞ −

∫
0

1 20, , (1)
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in a set A the function is defined in the form 

 A M M t= ( ) ∃ > ( ) < ∈ −( ) × ∞[ )











f t k k f t e if

t
k jj: , , . , , ,1 2 0 1 0  

where k1 and k2 may be finite or infinite and the constant M must be finite 
number. For existence of  Kamal transform are that f(t) for t ≥ 0  be piece wise 
continuous and of exponential order, else it will not be exist.

2.2 Derivative of Kamal Transform 

Let function f(t) then derivative of f(t) with respect to t and the nth order 
derivative of the same with respect to t are respectively. Then kamal transform 
of derivative given by[7],

 K t Gf
v

v v fn
n k

n k n k( )  = ( ) − ∑ ( )=
− − +1 00

1 1  

n = 1 2 3, , ... in kamal transform of derivative which gives first and second 
derivative of f(t) with respect to ' '.t  

 K t G′ ( )  = ( ) − ( )f
v

v f1 0  

 K t G′′ ( )  = ( ) − ( ) − ′( )f
v

v
v
f f1 1 0 02

 

3. COUPLING OF KAMAL TRANSFORM AND ADOMIAN 
DECOMPOSITION METHOD [8]

Let the ordinary differential equation with initial condition given below:

 Lf t Rf t Nf t y t( ) ( ) ( ) ( ),+ + =  (2)

and the initial condition as followed

 f a0( ) =   (3)
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Here, L is invertible and first order derivative, R is linear differential operator, 
N is the non- linear term and y(t)  is the source term.  Applying kamal transform 
on both sides of the equation (2), we get  

 K Lf t Rf t Nf t K y t( ) ( ) ( ) ( ) .+ +[ ] = [ ]  (4)

Now, the differentiation property of kamal transform and the initial condition 
from equation (3), is used. Hence, we obtain

 
1 0
v
K f t f K y t K Rf t Nf t( )  − ( )  = [ ] − +[ ]( ) ( ) ( )  (5)

 
1 0
v
K f t f K y t K Rf t Nf t( )  = ( )  + [ ] − +[ ]( ) ( ) ( )  (6)

 K f t av vk y t vK Rf t Nf t( )  = + [ ] − +[ ]( ) ( ) ( ) .  (7)

Now, we operate inverse of kamal transform on both sides

 f t a K vk y t Rf t Nf t( )  = + [ ] − +[ ]−1{ ( ) ( ) ( ) },  (8)

So, the solution can be represented as an infinite series:

 f t f tnn
( ) ( ).=

=

∞∑ 0  (9)

and the non- linear term can be decomposed as

 Nf t A fnn
( ) ( ).=

=

∞∑ 0
 (10)

Where, A
n
(f) are Adomian polynomials of f f f0 1 2, , … , given by

 A
n
d
d

Nf atn

n

n= ( ) =1 0
!

,
τ

τ τ  

to get the value of A
n
, we put a grouping parameter τ.

usinging equation (9) and (10) in equation (8), we have

 ∑ ( ) = ( ) + ( )  − ∑ ( ) + ∑ ( ) { }=
∞ −

=
∞

=
∞

n n n n n nf t F t K vK y t R f t A f0
1

0 0 ,,  (11)

here, F(t) is the term which is arisen from the source term and the given initial 
condition. On comparing both sides of equation (10) and using standard 
adomian decomposition method, we get 
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 f t F t0 ( ) ( ),=  (12)

 f t K vK Ry t A1
1

0 0( ) [ ( ) ],= − +{ }−  (13)

 f t K vK Ry t A2
1

1 1( ) [ ( ) ],= − +{ }−
 (14)

And the general solution can be written as 

 f t K vK Ry t A nn n n+
−= − +{ } ≥1

1 0( ) [ ( ) ],  (15)

Again, applying the kamal transform on right hand side of equation (15) and 
taking inverse of kamal transform, we get y y y0 1 2, , ,…  which is infinite series 
of form of the desired solution. The system of non – linear differential equation 
of HIV infection model of CD4+T [6]cells are given by equation (16).

 

dA
dt

p A rA A P
A

AM

dP
dt

Am P

dM
dt

N P M AM

= − + − +





−

= −

= − −


α δ

σ β

β γ δ

1
max














 (16)

With the initial conditions

 A r P r M r( ) . , ( ) & ( ) . .0 0 1 0 0 0 0 11 2 3= = = = =  (17)

Here, A  = Healthy cells  , P  = Infected cells , M = Virus
Here A(t) , P(t) and M(t) gives the concentration of CD4+T cells , infected 

CD4+T cells by HIV and free HIV virus in the blood , respectively. α β γ, ,   
Represent natural turnover rate of healthy CD4+T cells, infected CD4+T cells 
and death rate of HIV virus, respectively. δ > 0 is the rate of infected cell; 
p is the rate production of CD4+T cells. N is the number of virus produced 
by infected CD4+T cells. A

max
 gives the information about the maximum 

population of CD4+T cells, while, 1− +





A P
Amax

 and describes the logistic 

growth of T cells[6] . And σ denotes the rate of infected cells that became 
active. All the parameters that are chosen as:

 
α β γ δ

σ
= = = = =

==
0 02 0 3 2 4 0 0027 0 1 0

500 0 001
. , . , . , . , . , ,

, . ,
p N = 1

Amax rr = 3.  
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Equation (16) is rewritten as,

 

dA
dt

p A rA A P
A

AM

dP
dt

AM P

dM
dt

N P M AM

= − + − +





−

= −

= − −


α δ

σ β

β γ δ

1
max














 

applying kamal  transform on both sides in the above equations

 
K dA

dt
K p A r A A P

A
MA

K dA
dt

max









= − + − +





−


















α δ1




= ( ) − ( ) + − +
















− ( )









K p K A K r A A P

A
K MA

max

α δ1


 

 
K dA

dt
K p K A K rA

K rA
A

K rAP
Amax max









= { } − { } + { }

−








−








α

2

−− { }K MAδ ,
 (19)

 �K dP
dt

K MA P







= −{ }σ β  

 K dP
dt

K MA K P







= −{ }σ β} { ,  (20)

 K dM
dt

K M P M MA







= − −{ }β γ δ  

 K dM
dt

K M P K M K MA







= − { } −{ }β γ δ} { ,  (21)

We get from equation (19)



Khandelwal, Y 
Kumawat, P 
khandelwal, R

186

1 0 1

2

v
A v A pK K A rK A

r
A

K A r
A

K AP K MA
max max

( ){ } − ( ) = { } − { } + { }

− { } − { } −

α

δ {{ }

( ){ } = + − { } + { }

− { } − { } − { }

1
1

2

v
A v r pv K A rK A

r
A

K A r
A

K AP K MA
max max

α

δ

AA v vr pv v K A vrK A rv
A

K A

r v
A

K AP v K MA
max

max

( ) = + − { } + { } − { }
− { } − {

1
2 2α

δ }}

 
A v rv pv v K A vrK A

v r
A

K A v r
A

K AP v K MA
max max

( ) = + − { } + { }
− { } − { } − { }

1
2

2

α

δ ,,
 (22)

now, we applying kamal transform on equation (20), we arrive at

K dP
dt

K MA K P

v
P v P K MA K P

v
P v









= −{ }

( ){ } − ( ) = ( ) − ( )

( ){ }

σ β

σ β

} {

1 0

1 == + ( ) − ( )
( ){ } = + ( ) − ( ) 

r K MA K P

P v vr v K MA K P
2

2

σ β

σ β

 P v vr v K MA v K P( ){ } = + ( ) − ( )2 σ β ,  (23)

applying kamal transform on equation (21)

1 0

1
3

v
M v M M K P K MA K M

v
M v r M K P K MA

( ){ } − ( ) = ( ) − ( ) − ( )

( ){ } = + ( ) − ( )

β δ γ

β δ −− ( )
( ){ } = + ( ) − ( ) − ( ) 

γ

β δ γ

K M

M v vr v M K P K MA K M3

 M v vr vM K P v K MA v K M( ){ } = + ( ) − ( ) − ( )3 β δ γ  (24)
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Now, we assume that     

E H V E F AP G MA,I== = = = = =
=

∞

=

∞ ∞ ∞

∑ ∑ ∑ ∑
n

n
n

n n nE A P M A
0 0 0 0

2, , , , ,

We put the assumed values in equation (22)

 
K A rv pv v K A vrK A

v r
A

K E v

n n n n

max
n

∑{ } = + − ∑{ } + ∑{ }
− ∑{ } −

=
∞ ∞ ∞

∞

0 1
2

0 0

0

α

. rr
A

K F v K G
max

n n∑{ } − ∑{ }∞ ∞
0 0δ  (25)

We put the assumed values in equation (23), we have

 K P r v v K G v K Pn n n n∑{ } = + ∑{ } − ∑{ }=
∞ ∞ ∞

0 2 0 0σ β ,  (26)

We put the assumed values in equation (24), we obtained           

 ∑{ } = + ∑{ } − ∑{ } − ∑{ }=
∞ ∞ ∞ ∞
n n n n nM r v M K P K G K M0 3 0 0 0β δ  (27)

Here E
n
, F

n
, G

n
 are Adomian polynomials.

These are given by

E

E A
E A A

E A A A
E A A A A

E A A A A

n =
+

+
+ +

=

=

=

=

=

0 0
2

1 0 1

2 0 2 1
2

3 0 3 1 2

4 0 4 1 3

2
2

2 2
2 2 AA

E A A A A A A
2

2

5 0 5 1 4 2 32 2 2= + +

F

F
F A P
A P A P

F A P A P A P
F A P A P A P An =

+
+ +

= + + +

=

=

=

0 0 1

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 00 3

4 4 0 3 1 2 2 1 3 0 4

5 5 0 4 1 3 2 2 3 1 4

P
F A P A P A P A P A P

F A P A P A P A P A P
=

=

+ + + +
+ + + + ++ A P0 5
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 G

G M A
G M A M A

G M A M A M A
G M A M P M A Mn =

+
+ +

= + + +

=

=

=

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 00 3

4 4 0 3 1 2 2 1 3 0 4

5 5 0 4 1 3 2 2 3 1 4

A
G M A M A M A M A M A
M A M A M A M A M AG

= + + + +
+ + + += ++M A0 5

 

Using the above values in equations (25), (26), (27) respectively and we have 
following solution from equation (25)

K A rv pv

K A v K A vrK A v r
A

K E v r
A

K F
max max

0 1
2

1 0 0 0 0

{ } = +

{ } = − { } + { } − { } − {α }} − { }

{ } = − { } + { } − { } − { } −

v K G

K A v K A vrK A v r
A

K E v r
A

K F v
max max

δ

α

0

2 1 1 1 1 δδK G1{ }

 
K A v K A vrK A

v r
A

K E v r
A

K F v K G

n n n

max
n

max
n n

+{ } = − { } + { }
− { } − { } − { }

1 α

δ ,
 (28)

from equation (26)

 
K P r v
K P v K G v K P
K P v K G v K P

0 2

1 0 0

2 1 1

{ } =
{ } = { } − { }
{ } = { } − { }

σ β
σ β

 

 K P v K G v K Pn n n+{ } = { } − { }1 σ β ,   (29)

from equation (27)

 
K M r v
K M vM K P v K G v K M
K M vM K P vn n

0 3

1 0 0 0

1

{ } =
{ } = { } − { } − { }
{ } = { } −+

β δ γ
β δKK G v K Mn n{ } − { }γ .

  (30)

Result

Let us take 
A 0 0 1 0 0 0 0 11 2 3( ) = = ( ) = = ( ) = =r P r M r. , , .  
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And we use kamal inverse transform on both the side of the above equation 
(28) ,(29) ,(30), we get             
A t t( ) = + + + + +0 1 0 3979526 0 59289 0 5887188 0 438295 0 2602 3 4. . . . . .t t t 88633 0 1291955 6t t− .

A t t( ) = + + + + +0 1 0 3979526 0 59289 0 5887188 0 438295 0 2602 3 4. . . . . .t t t 88633 0 1291955 6t t− .

P t t( ) = + − −0 000027 0 000017273 0 00000840515 0 000006147282 3. . . .t t tt t t4 5 60 000002835857 0 000001153− +. .
P t t( ) = + − −0 000027 0 000017273 0 00000840515 0 000006147282 3. . . .t t tt t t4 5 60 000002835857 0 000001153− +. .

M t t( ) = − + + + −0 1 0 2407253 0 28792736 0 2304149 0 138243 02 3 4. . . . . .t t t 00663528 0 02653975 6t t+ .
M t t( ) = − + + + −0 1 0 2407253 0 28792736 0 2304149 0 138243 02 3 4. . . . . .t t t 00663528 0 02653975 6t t+ .

A(t) , P(t) and M(t) gives the concentration of CD4+T cells , infected CDT cells 
by HIV and free HIV virus in the blood.

DISCUSSION AND CONCLUSION

We employed the amalgamation of kamal transform then adomian decay 
procedure in the direction of gaining a clogged variety of key of classic HIV 
model. The innovative means is complimentary on or after redundant precise 
complexities. Even if the difficult painstaking rejects careful solution, the 
correctness also reliability of the recent system is assured. Eventually the 
mathematical solution of non linear differential equation (CD4+T) systems can 
be easily obtained. The illustration proves that the KADM is a suitable method 
to solve non- linear systems easily.    
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