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Abstract In my study, I inspect edge vertex prime labeling of some graphs like
complete bipartite graphs K, & K, .1proved that the graphs K, , for every n &
K3,n forn=3,4,..., 29 are edge vertex prime.
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1. INTRODUCTION

In my study, all graphs G = (V, G, E (G)) are finite, directionless and simple
graphs. V(G) will symbolized the vertex set and E(G) will symbolized edge
set of the graph. IV(G)l and IE(G)| will symbolized the number of vertices
and number of edges of graph one by one. For various graphs, theorical
symbolization and vocabulary, I survey Gross and Yeelen [3] and for Number
theory, I survey Burton [1].

Definition 1.1. Graph labeling is an assignment of integers either to the
vertices or edges or both subject to certain conditions.

A dynamic survey on graph labeling is regularly updated by Gallian [2].
Definition 1.2. Prime labeling is a function f:V(G)—{1,2,...,n} with one-
to-one correspondence and each edge e = uv, gcd(f(u), f(v)) = 1.

Prime graph is a graph which has prime labeling.

Prime labeling notation was invented by Roger Entringer and familiarized in
an article by Taut, Dabboucy and Howalla [6].

Definition 1.3.Edge vertex prime labeling is a function f:V(G)UE(G)—
{1,2,..., V(G) UE (G)|} with one-to-one correspondence and for any edge e
= uv; flu), f(v) and fluv) are pairwise relatively prime.

Edge vertex prime graph is a graph, which admits edge vertex prime
labeling.

Mathematical Journal of
Interdisciplinary Sciences
Vol-6, No-2,

March 2018

pp- 167-180

CHITKARA
UNIVERSITY



Parmar, YM

R. Jagadesh and J. Baskar Babujee [4] introduced an edge vertex prime
labeling. They proved the existence of paths, cycles and star-K, .Y Parmar [5]
proved that

e The wheel graph W is an edge vertex prime graph for every n.
e The fan graph f is an edge vertex prime graph for every n.
¢ The friendship graph F is an edge vertex prime graph for every n.

Definition 1.4. A simple bipartite graph G, with bipartition V' =S UT , every
vertex in S is joined to every vertex of 7 is called complete bipartite graph. If
Shas n' vertices and 7 has n vertices, such a graph is denoted by K, .

2. MAIN THEOREMS

Theorem 2.1 The complete bipartite graph K,  is an edge vertex prime graph.

Proof: Let G = K, is a complete bipartite graph and

V(G)={ul,uz}u{vl,vz,...,vn}

E(G):{ulvj/ISan}u{uzvj/ISan}

Order of complete bipartite graph K,, is, |V(G)| =n+2 andsizeis, | E(G)| =2n.
Thus we have |E(G)|+|V (G)|=3n+2.

Assume that is a largest prime number occur in the set {1, 2,....3n+ 2} .

Let f:V(G)UE(G)>{L2,...[r(G)UE(G)} is a function with one-to-
one correspondence and it is defined as follows:

Case-1: p=3n+2
f(uw)=1

f(u2)=3n+2=p
f(v,)=35:9
f(ulvj):3j—l;‘v’j

f(uzvj) =3j+LVj
Now our claims are

(D flu,), f(vj) and f(ulvj) are relatively prime in pairwise.

(2) flu,), f(vj) and f(uzvj) are relatively prime in pairwise.
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(1) ged(f (), f(v;))=ged(1,3/) =1,
gcd(f(ul),f(ulvj)) =ged(1,3/-1)=1,Yj

ng(f(vj)’f(ulvj)):ng(3j73j_1):15Vj, since 3j and 3j — 1 are
conjugative numbers.

(2) gcd(f(u2 ),f(vjp = gcd(p,3j) =1,Vj , since p is the largest prime in the
corresponding set and there are no such products in the set, which has p as a
multipier.

gcd(f(u2),f(uzvj))=gcd(p,3j+1):1,v]'

ng(f(Vj),f(uzvj))chd(3j,3j+1):1,Vj, since 3j and 3j + 1 are
conjugative numbers.

Thus, for p=3n+2,K,, is an edge vertex prime graph.
Case -2: p=3n-— (3; +1);¢=0,1,...,N (natural numbers)

f(u)=1
f(”z)=p
f(vi)={3j s J=12,,n—(t+1)

3j+1 ; j=n—-t,n—t+1,...,n

3j-1 5 j=12,..,n—(t+1)
3j ; j=n—t,n—t+1,....n

)]

f(uv)_ 3j+1 5 j=12,..,n—(1+1)
2 3j+2 ; j=n—-t,n—t+1,...,n

Now our claims are
I f (ul), f (V.,-) and f (ulv j) are relatively prime in pairwise.
2 f (u2 ), f (vj) and f (uzv/.) are relatively prime in pairwise.

o e ) () -

=1

ged(1,3) s j=L2..,n—(t+1)
ged(L3j+1) 5 j=n—-t,n—t+1,...,n
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13] 1 ; j=1,2,...,n—(t+1)
d( f
&8¢ ( { 13] ; j=n—tn—t+1,...,n

gcd 37,3/ - 1 v j=12,...,n—(t+1
ced(/(v,) { (1+1)

gcd 3]+13] ; j=n—tn—t+1,...,n
=1

Since 3/ —1, 3j and 3j + 1 are conjugative numbers.

p,3] ; j=1,2,...,n—(t+1)

2 cd
@e { p33]+l ; j=n—tn—t+1,..,n
=1

ged(p,3j+1) 5 j=12,...n—(1+1)
ng(f(uz)af(Uzvj)) { d(p,3]+2) . j=n—tin—t+l,...n

1 ;o j=12,...,n— 1
gcd( { 3]3]+ ;o j=L2,...,n (t+)

3]+1 3]+2 ; j=En—tn—t+1,...,n
=1

Thus, for p=3n— (3t + 1);K2,n is an edge vertex prime graph.

Case -3: p=3n—(3t—1);r=0,1,...,N (natural numbers)

f(ul)zl
f(u)=p

3j 5 j=L2..,n—(t+1)
f(vj): 3j-1 ; j=n—t

3j+1 5 j=n—t+1,...,n

f(uv)— 3_]_1 5 j=1,2,...,n_(t+1)
i 3j ; j=n—t,n—t+l,...,n
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3j+1 5 j=L2,...,n—(t+1
f(uzv.)z J » J=12.n=(141) Labeling for K, and
J 3j+2 5 j=n—-t,n—t+1,...,n K, Graphs
Now our claims are

(N f(w).f (vj) and f (ulvj) are relatively prime in pairwise.

) f(u,). f (vj) and f (uzv j) are relatively prime in pairwise.

ged(1,3/) s j=L2,..,n—(1+1)
(1) gcd(f(ul),f(vj)): ged(1,3j-1) ; j=n-—t
ged(L3j+1) ;3 j=n—t+1...,n
=1

god(f ()

d(1,3j-1) ; j=12,...n—(t+1)
13] ; j=n—tin—t+1,...,n

ged(3/,3j-1) 5 j=L2,...n—(r+1)
gcd(f(vj),f(ulvj))= ged(3/-1,3j) ; j=n—t
ged(3j+13j) 5 j=n—t+l...,n
=1

Since 3j — 1, 3j and 3j + 1 are conjugative numbers.

ged(p,3)) s J=L2,..,n—(t+1)
@) god(f (), £ (v;))={eed(p.3j-1) ;3 j=n—t
ged(p,3j+1) 5 j=n—t+l...,n
=1
p 3]+1 ;o J=1L2,...,n—(t+1
ged(f (u,), { T 1)
p,3]+2 ; j=n—tn—t+1,...,n
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ged(3/,3/+1) s j=L2..,n—(1+1)
gcd(f(vj),f(uzvj))z ged(3/-13j+2) 5 j=n—t
ged(3j+1,3j+2) 5 j=n—i+1...,n
=1
Thus, for p=3n- (3t —1);K2,n is an edge vertex prime graph.
Hence, complete bipartite graph K|,  is an edge vertex prime graph.

Hllustration 2.1 for case-1: The complete bipartite graph G = K, ; is an edge
vertex prime graph, which is shown in the Figure 1.

Figure 1: K, ,

Hllustration 2.2 for case-2: The complete bipartite graph G = K, ; is an edge
vertex prime graph with # = 0, which is shown in the Figure 2.

Figure 2: K,
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For K, .|E(G)|+|V'(G)|=3n+2=26. So the largest prime number in the
set{1,2,...,26} isp = 23.

ie. p=3(8)—-1=3n-1.

Here we choose case-2, p = 3n — (3t +1) and compare it to 3n — 1, we get
t =0. Since in case-3,p = 3n — (3t — 1), we get t = 2/3, which is not possible
because ¢ is natural number with 0.

Hllustration 2.3 for case-3: The complete bipartite graph G =K, ,, is an edge
vertex prime graph with # = 0, which is shown in the Figure 3.

Figure 3: K, |

Hllustration 2.4 for case-3: The complete bipartite graph G =K, ,, is an edge
vertex prime graph with ¢ = 1, which is shown in the Figure 4.

Theorem 2.2 The complete bipartite graph K;,;n=3,4,...,29 is an edge
vertex prime graph.

Figure 4: K, |
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Proof: Let G=K, ,;n=3,4,...,29 is a complete bipartite graph and
V(G)z{ul,uz,u3}u{vl,vz,...,vn}

E(G)z{ulvj /ISan}u{uzvj/ISan}u{u3vj /ISan}

Order of complete bipartite graph K, is, |V(G)| =n+3 andsizeis, |E(G)[=3n.
Thus we have |E(G)| +|V(G)| =4n+3.

Let f:V(G)VE(G)—> {1,2,---, V(G) UE(G)|} is a function with one-to-
one correspondence and it is defined as follows:

So f(ul),f(vj),f(ulvj);f(uz),f(vj),f(uzvj) and f(u3),f(vj),f(u3vj)
are relatively prime in pairwise.
Thus, K, , is an edge vertex prime graph.

Case-2:n=6,8,9,12,13, ..., 20
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f(Vj ) = remaining all primes in ascending order except 2. Edge Vertex Prime

. . Labeling for K, and
_[4-2 5 j=1234 K. Graphs

f(“l"j)_ : . il 3

4j ; j=5,6,...,20

4j 5 j=1

4j+1 ; j=2
He) =1 o

4j+2 ; j=4,5 20

4j+4 ; j=123

4j+5 ; j=4,5"7,10,11
f(“3vj)=

4j+3 ; j=6,8,9,12,13,15,18
4j+1 ; j=14,16,17,19,20

f(uzv.),f(vj)f(z,:3 )1sone
ie. f (). f(v, )f(uv ) f(uz),f(vj),f(uzvj) and f(u;).f(v;).f (u;;)

are relatively prime in pairwise.

Thus, K;,;n=6,8,9,12,13,...,20 is an edge vertex prime graph.
Case -3: n=4,5,7,10,11
(u])zl
f (u2 ) =second largest prime in 4n + 3 numbers.
f (uy) =largest prime in 4n + 3 numbers.
f (v ; ) =remaining all primes in ascending order except 2 and 3.
fwy,)=4j;j=12,..11
4;-2 ; j=1
4;-5 5 j=2
fluy,)=44j-3 ; j=3
4;-1 ; j=4,7,9,10
4j+1 ; j=5,6,8,11
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Parmar, YM f(u3vj)=4j+2;j=1,2,...,11

Here f(ul),f(vj) & f(ulvj);f(u2),f(vj) & f(uzvj) and f(u3),f(vj)
& f (u3v j) are relatively prime in pairwise.

Thus, K;,;n=4,5,7,10,11 is an edge vertex prime graph.

Case -4: n=21,22,25,26,27,28

()
f ( ): second largest prime in 4n + 3 numbers.
f (u3 ) = largest prime in 4n + 3 numbers.

S v, )= remaining all primes in ascending order.
4j+5 5 j=1
2j 5, j=2,3,4
f(ulvj)— 4j+4 ; j=5
4J_2 ’ J=6
4j+2 5 j=T78,...,28
4j+11 ; j=1
4j+2 ; j=2,4
4;j ; J=3,24,25

f(sv;)= 4j+5 ; j=5710,11

4j+3 ; j=6,89,12,13,15,18,22,27,28
4j+1 ; j=14,16,17,19,20,21,23,26

4j+17 5 j=1
4j+6 ; j=2,5
4j+4 5 j=3,4,6,8,9,20

Swv,)=q4j+5 5 j=7

4j+3 5 j=21

4; ; J=22,23,26,27,28

4j-1 ; j=2425

Here f(u).f(v;) & f(wv,):f (). £ (v,) & f (wv;) and 1 (). £ (v))

& f (u3v j) are relatively prime in pairwise.

Thus, K, ;n=21,22,25,26,27,28 is an edge vertex prime graph.
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Case -5: n=23,24,29

f(w)=1
f(u, )= second largest prime in 4n + 3 numbers.
f (u3 ) =largest prime in 4n + 3 numbers.
f (Vj ) = remaining all primes with number 4 in ascending order.
4j+5 ; j=1
4j ; J=2
8j+1 ; j=3
fluy)=94j+2 | j=45671112...29
4j+3 ; j=8
4j+6 ; j=9
4;-2 ; j=10
155 5 j=1
S Jj=2
5 J=3
) =l0;2a L e
4j-4 Jj=5
4; ; j=6,7,..,29
215 ; j=1
7J ; J=2
115 ; J=3
37 ;=4
4j ; J=3
4j+15 ; j=6
f(u3vj)= 4j+6 ; j=7
4j+13 ; j=89
4j+11 ; j=10,11,13,16
4;+9 ; j=12,14,15,17,18,19
4;+7 ; j=20,21,26,27
4j+5 ; j=22,2528
4j+3 ; j=23,24,29

Edge Vertex Prime
Labeling for K, and
K, Graphs
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Parmar, YM Here f(ul),f(vj) & f(u1vj);f(u2)’f(vj) & f(uzvj) and f(u3),f(vj)
& f (u3v j) are relatively prime in pairwise.
Thus, K; ,;n=23,24,29 is an edge vertex prime graph.

Hllustration 2.5 for case-1: The complete bipartite graph G =K, is an edge
vertex prime graph, which is shown in the Figure 5.

uy Ua g

v V2 U3
Figure 5: K, ,

Hlustration 2.6 for case-2: The complete bipartite graph G = K |, is an edge
vertex prime graph, which is shown in the Figure 6.

Figure 6: K, ,
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K, is an edge

Hllustration 2.7 for case-3: The complete bipartite graph G

vertex prime graph, which is shown in the Figure 7.

2n
Graphs

3n

K

Figure 7: K,

K, is an edge

4: The complete bipartite graph G =

vertex prime graph, which is shown in the Figure 8.

Illustration 2.8 for case

Figure 8: K
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Parmar, YM Hllustration 2.9 for case-5: The complete bipartite graph G = K ,, is an edge
vertex prime graph, which is shown in the Figure 9.

Figure 9: K ,,
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CONCLUSION

Here, we have derived two new results related to edge vertex prime labeling
technique. To explore some new edge vertex prime graphs is an open problem.
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