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An injection defined from Euclidean n-space E nn ( )2≤ < ∞  to itself which preserves the triangles 
of perimeter 1 is an Euclidean motion. J. Lester presented two different proofs for this theorem in 
Euclidean plane (Lester 1985) and Euclidean space (Lester 1986). In this study we present a general 
proof which works both in Euclidean plane (n = 2) and Euclidean space (2 < n < ∞).Keywords: 

Euclidean geometry, Euclidean motion, The 
Beckman-Quarles theorem
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1. Introduction
It is well known that some geometric transformations can be 
characterized by the properties of they preserve. For instance, 
collinearity preserving bijections of Euclidean n-space 
E nn �( )2≤ <∞  characterize the affine transformations and 
this  theorem is known as the fundamental theorem of affine 
geometry. The Möbius transformations of the extended 
complex plane can be characterized by as transformations 
preserving quadruples of concylic points. In Minkowski 
space the Alexandrov’s theorem which describes Lorentz 
transformations as the transformations of Minkowski 
space preserving the speed of light. In Euclidean space 
E nn �( )2≤ <∞  the Beckman-Quarles theorem which 
identifies as motions those functions from En  to itself 
preserving pairs of points of a given fixed distance apart. 
More precisely Beckman-Quarles theorem (Beckman and 
Quarles 1953) states that a function from En  to itself which 
preserves the relation | |x y Q− =  for a fixed �Q ∈ +  must 
be an Euclidean motion where | |x y−  denotes the distance 
between x y En, ∈ . This theorem plays a major role in our 
result. G. Martin (unpublished) characterized the equiaffine 
transformations (affine and area preserving) of E2  via the 
injections which preserves triangles with area 1 as follows, 
see (Lester 1985).
Theorem 1.1:  An injection from Euclidean plane to itself 
which preserves triangles with area 1 must be equiaffine, see 
(Lester 1985).

J. Lester generalized this theorem to the Euclidean space En  
as follows:
Theorem 1.2: Let f be an injection from Euclidean space 
�E nn 2 ≤ < ∞( ) to itself which preserves triangles with area 
1 must be a Euclidean motion, see (Lester 1986).
J. Lester also obtained the following results using triangles of 
perimeter 1 instead of triangles of area 1. 
Theorem 1.3: Let f be an injection from Euclidean plane 
�E2  to itself which preserves triangles of perimeter 1 must be 
a Euclidean motion, see (Lester 1985).
Theorem 1.4: Let f be an injection from Euclidean 
space  E nn ( )2≤ <∞  to itself which preserves triangles 
of perimeter 1 must be a Euclidean motion, see (Lester 
1986).

2. A New Proof of the Lester’s Perimeter 
Theorem in Euclidean Space 
Lemma 2.1: Let F c1 0 0= ( ), , ,  and F c2 0 0= −( ), , ,  
be two distinct points in Euclidean space En , where 
0 1

4
2< < < < ∞c nand . If XF F1 2  is a triangle of 

perimeter 1 then  must be a point on n-dimensional rotated 
ellipsoid with equation 
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where a c a b c+ = = +
1
2

2 2 2,  and xi is the natural 

coordinate function defined by x p p p pi n i1 2, , , .( ) =

Proof: Let us take a point X x x xn= ( )1 2, , ,  such that

 X F X F F F− + − + − =1 2 1 2 1 . 

Clearly 

 X F X F c a− + − = − =1 2 1 2 2  

which implies a c+ =
1
2

. Hence we get 
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Let’s denote the number a c2 2−  by b2 . Clearly we get 
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and this yields the equation which we desired. 
Clearly, X a≠ ( )∓ �, , ,0 0  since XF F1 2  is a triangle of 

perimeter 1. Notice that the points A a1 0 0= ( ), , , ,
A a F c2 10 0 0 0= −( ) = ( ), , , , , , ,  and F c2 0 0= −( ), , ,
are collinear.
Corollary 2.1. Let F1 and F2 be two distinct points in 
Euclidean space E nn ( )2< < ∞  such that

 F F c1 2 2 1
2

− = <  

and define the set

Ω = ∈{ }X E XF Fn : .1 2 1is a triangle of perimeter

Then the locus of all points X En∈  is an n-dimensional 
rotated ellipsoid drilled by two points. These two points are 
clearly the vertices of the ellipsoid.  
Lemma 2.2. Let f be an injection from Euclidean space  
E nn ( )2< < ∞ to itself which preserves triangles of 
perimeter 1. Then f preserves the right angles.
Proof: Let l1 and l2 be two distinct lines in En  which meets 
perpendicularly. Denote the common point of these lines by 
F1. Now take a point on l2, say F2, such that 

 0 2 1
21 2< − = <F F c .  

Now following the same way in the proof of Lemma 2.1, 
one can easily construct the n-dimensional rotated ellipsoid 
Ω with focal points F1 and F2. Clearly l1 and Ω  meets at 
two points, say A and B. Now draw the Euclidean line 
passing through F2 and parallel to L1. Obviously, this line 
and Ω  meets at two points and denote them by C and D. 
It is clear that either AC BD  or AD BC . Without loss 
of generality we may assume AC BD .  Clearly one can 
easily see that AF F C1 2  is a rectangle which consists of four 
triangles AF F F F C F CA1 2 1 2 2, ,  and CAF1 . The perimeter of 
these triangles is 1. Clearly, by hypothesis, the perimeter of 
the triangles A F F F F C F C A' ' ', ' ' ', '

1 2 1 2 2 ′ ′  and C A F' ' '1  is 1, 
where f A A f C C f F F f F F( ) = ( ) = ( ) = ( ) =′ ′, , ', '.1 1 2 2  
This implies that A F F C' ' ' '1 2  is a rectangle, see (Lester 
1985). Finally one can easily see that ′ ⊥A F F F1 1 2

' ' ' . This 
yields us f l f l1 2( ) ⊥ ( )  which finishes the proof.
Lemma 2.3: Let f be an injection from Euclidean space
E nn 2 < < ∞( )  to itself which preserves triangles of 
perimeter 1 and a, c be two positive real numbers satisfying 

a c+ =
1
2

 and 0 1
4

1
2

< < < <c a  . If A and B are two 

points satisfying A B c
a

− = −1  then f preserves the 
midpoint of A and B.  
Proof: Let F1 and F2 be two distinct points in En  satisfying 

0 1
21 2< − <F F . Now construct the n-dimensional 

rotated ellipsoid Ω  with focal points F1, F2 in the same way 
as in the proof of Lemma 2.1 and Corollary 2.1. Let K and 
L be the vertices of Ω . Then for each point X of Ω  such 
that K X L≠ ≠ , the perimeter of the triangle XF F1 2  is 
1. Clearly, there exists appropriate points of Ω  to get an 
orthogonal basis of En. More precisely, there exists some 
points on Ω , say X X Xn1 2 1, , , −  such that the set

 θ1 1 2 1 1 1 2 1 1= { }−F F F X F X F Xn, , , ,
� ����� � ����� � ����� � �������

�  

is an orthogonal basis of En . Clearly K X Lj≠ ≠  for each  
j n∈ −{ }1 2 1, , , . In addition to this the set 

 θ2 1 2 1 1 1 2 1 1={ }−F F FY F X F Xn, , , ,  

is also an orthogonal basis of En where FY F X1 1 1 1

� ���� � �����
= − . 

Since  f preserves the right angles by Lemma 2.2, it is clear 
that the sets

 θ1 1 2 1 1 1 2 1 1' ' ', ' ', ' ', , '= −F F F X F X F Xn
� ������� � ������� � �������

� ''
� ���������

{ }  

and

 θ2 1 2 1 1 1 2 1 1' ' ', ' ', ' ', , ' '= −F F F Y F X F Xn
� ������� � ������ � �������

�
�� ���������

{ }  
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are also orthogonal bases of En where f Y Y f F Fi i1 1( ) = ( ) =', ' 
f Y Y f F Fi i1 1( ) = ( ) =', 'and f X Xj j( ) = ' for ∀ ∈ { }i 1 2,  and for 

∀ ∈ −{ }j n1 2 1, , , . Since f is injective and it preserves 
the triangles of perimeter 1, one can easily see that 
F Y F X1 1 1 1' ' ' '
� ������ � �������

= −  and this implies that F1 ' is the midpoint 
of X1 ' and Y1 '. 
Corollary 2.2. Let f be an injection from Euclidean space 
E nn 2 < < ∞( ) to itself which preserves triangles of 
perimeter 1. Then f preserves the Euclidean lines, i.e. f is 
affine. 
Now we are ready to give the general proof of Theorem 1.4 
for 2≤ < ∞n .
Proof of Theorem 1.4: Let ABC be an equailateral 
triangle with perimeter 1 and denote the midpoints 
of the sides of  ABC by M MAB BC,  and MAC . Clearly 
AM BC BM ACBC AC⊥ ⊥,� � �  and CM ABAB ⊥ .  Since 

f preserves the right angles by Lemma 2.2, we get 
′ ′ ′⊥ ⊥A M B C B M A CBC AC' ', ' ' '  and C M A BAB' ' '′ ⊥  

where ′ ′= =( ) ( )M f M M f M
AB AB AC AC

, and ′ = ( )M f MBC BC . 
Moreover by Lemma 2.3, ′ ′M MAB BC, ,and ′MAC  are the 
midpoints of the sides of A B C' ' '  More precisely

 ′
′

′
′ ′ ′

=
+

=
+

=
+M A B M B C M A C

AB BC AC
' , , ' '

2 2 2
 

holds. This yields us that the triangle A B C' ' '  must 
be an equilateral triangle of perimeter 1. Hence we get 

A B A C B C' ' ' '− = − = − =′ ′ 1
3

. Finally we see that 

f preserves the distance 1
3

. From the Beckman-Quarles 

theorem (Beckman and Quarles 1953) f must be a motion 
of En . It is easy to see that the method we used in the proof 
of Theorem 1.4 is valid for the proof of Theorem 1.3.
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