A New Proof of the Lester's Perimeter Theorem in Euclidean Space

O. Demirel ${ }^{*}$, L. Aslan and D. Topal
Afyon Kocatepe University, Department of Mathematics, Ahmet Necdet SEZER Campus, 03200, Afyonkarahisar, Turkey
Email: odemirel@aku.edu.tr", leylaaslan3356@gmail.com, damla.1tpl@gmail.com

ARTICLE INFORMATION

Received: September 12, 2019
Revised: January 25, 2020
Accepted: February 03, 2020
Published Online: March 30, 2020
Keywords:
Euclidean geometry, Euclidean motion, The
Beckman-Quarles theorem

Abstract

An injection defined from Euclidean n-space $E^{n}(2 \leq n<\infty)$ to itself which preserves the triangles of perimeter 1 is an Euclidean motion. J. Lester presented two different proofs for this theorem in Euclidean plane (Lester 1985) and Euclidean space (Lester 1986). In this study we present a general proof which works both in Euclidean plane $(n=2)$ and Euclidean space $(2<n<\infty)$.

DOI: 10.15415/mjis.2020.82007

1. Introduction

It is well known that some geometric transformations can be characterized by the properties of they preserve. For instance, collinearity preserving bijections of Euclidean n-space $E^{n}(2 \leq n<\infty)$ characterize the affine transformations and this theorem is known as the fundamental theorem of affine geometry. The Möbius transformations of the extended complex plane can be characterized by as transformations preserving quadruples of concylic points. In Minkowski space the Alexandrov's theorem which describes Lorentz transformations as the transformations of Minkowski space preserving the speed of light. In Euclidean space $E^{n}(2 \leq n<\infty)$ the Beckman-Quarles theorem which identifies as motions those functions from E^{n} to itself preserving pairs of points of a given fixed distance apart. More precisely Beckman-Quarles theorem (Beckman and Quarles 1953) states that a function from E^{n} to itself which preserves the relation $|x-y|=Q$ for a fixed $Q \in \mathbb{R}^{+}$must be an Euclidean motion where $|x-y|$ denotes the distance between $x, y \in E^{n}$. This theorem plays a major role in our result. G. Martin (unpublished) characterized the equiaffine transformations (affine and area preserving) of E^{2} via the injections which preserves triangles with area 1 as follows, see (Lester 1985).
Theorem 1.1: An injection from Euclidean plane to itself which preserves triangles with area 1 must be equiaffine, see (Lester 1985).
J. Lester generalized this theorem to the Euclidean space E^{n} as follows:
Theorem 1.2: Let f be an injection from Euclidean space $E^{n}(2 \leq n<\infty)$ to itself which preserves triangles with area 1 must be a Euclidean motion, see (Lester 1986).
J. Lester also obtained the following results using triangles of perimeter 1 instead of triangles of area 1 .
Theorem 1.3: Let f be an injection from Euclidean plane E^{2} to itself which preserves triangles of perimeter 1 must be a Euclidean motion, see (Lester 1985).
Theorem 1.4: Let f be an injection from Euclidean space $E^{n}(2 \leq n<\infty)$ to itself which preserves triangles of perimeter 1 must be a Euclidean motion, see (Lester 1986).

2. A New Proof of the Lester's Perimeter Theorem in Euclidean Space

Lemma 2.1: Let $F_{1}=(c, 0, \cdots, 0)$ and $F_{2}=(-c, 0, \cdots, 0)$ be two distinct points in Euclidean space E^{n}, where $0<c<\frac{1}{4}$ and $2<n<\infty$. If $X F_{1} F_{2}$ is a triangle of perimeter 1 then must be a point on n-dimensional rotated ellipsoid with equation

$$
\frac{x_{1}^{2}}{a^{2}}+\sum_{i=2}^{n} \frac{x_{i}^{2}}{b^{2}}=1
$$

where $a+c=\frac{1}{2}, a^{2}=b^{2}+c^{2}$ and x_{i} is the natural coordinate function defined by $x_{i}\left(p_{1}, p_{2}, \cdots, p_{n}\right)=p_{i}$.
Proof: Let us take a point $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that

$$
\left|X-F_{1}\right|+\left|X-F_{2}\right|+\left|F_{1}-F_{2}\right|=1
$$

Clearly

$$
\left|X-F_{1}\right|+\left|X-F_{2}\right|=1-2 c=2 a
$$

which implies $a+c=\frac{1}{2}$. Hence we get

$$
\sqrt{\sum_{i=2}^{n} x_{i}^{2}+\left(x_{1}-c\right)^{2}}+\sqrt{\sum_{i=2}^{n} x_{i}^{2}+\left(x_{1}+c\right)^{2}}=2 a
$$

which implies

$$
a^{2}\left(a^{2}-c^{2}\right)=x_{1}^{2}\left(a^{2}-c^{2}\right)+a^{2} \sum_{i=2}^{n} x_{i}^{2}
$$

Let's denote the number $a^{2}-c^{2}$ by b^{2}. Clearly we get

$$
a^{2} b^{2}=x_{1}^{2} b^{2}+a^{2} \sum_{i=2}^{n} x_{i}^{2}
$$

and this yields the equation which we desired.
Clearly, $X \neq(\mp a, 0, \cdots, 0)$ since $X F_{1} F_{2}$ is a triangle of perimeter 1 . Notice that the points $A_{1}=(a, 0, \cdots, 0)$, $A_{2}=(-a, 0, \cdots, 0), F_{1}=(c, 0, \cdots, 0)$ and $F_{2}=(-c, 0, \cdots, 0)$ are collinear.
Corollary 2.1. Let F_{1} and F_{2} be two distinct points in Euclidean space $E^{n}(2<n<\infty)$ such that

$$
\left|F_{1}-F_{2}\right|=2 c<\frac{1}{2}
$$

and define the set

$$
\Omega=\left\{X \in E^{n}: X F_{1} F_{2} \text { is a triangle of perimeter } 1\right\}
$$

Then the locus of all points $X \in E^{n}$ is an n-dimensional rotated ellipsoid drilled by two points. These two points are clearly the vertices of the ellipsoid.
Lemma 2.2. Let f be an injection from Euclidean space $E^{n}(2<n<\infty)$ to itself which preserves triangles of perimeter 1. Then f preserves the right angles.
Proof: Let l_{1} and l_{2} be two distinct lines in E^{n} which meets perpendicularly. Denote the common point of these lines by F_{1}. Now take a point on l_{2}, say F_{2}, such that

$$
0<\left|F_{1}-F_{2}\right|=2 c<\frac{1}{2}
$$

Now following the same way in the proof of Lemma 2.1, one can easily construct the n-dimensional rotated ellipsoid Ω with focal points F_{1} and F_{2}. Clearly l_{1} and Ω meets at two points, say A and B. Now draw the Euclidean line passing through F_{2} and parallel to L_{1}. Obviously, this line and Ω meets at two points and denote them by C and D. It is clear that either $A C \| B D$ or $A D \| B C$. Without loss of generality we may assume $A C \| B D$. Clearly one can easily see that $A F_{1} F_{2} C$ is a rectangle which consists of four triangles $A F_{1} F_{2}, F_{1} F_{2} C, F_{2} C A$ and $C A F_{1}$. The perimeter of these triangles is 1 . Clearly, by hypothesis, the perimeter of the triangles $A^{\prime} F_{1}{ }^{\prime} F_{2}{ }^{\prime}, F_{1}{ }^{\prime} F_{2}{ }^{\prime} C^{\prime}, F_{2} C^{\prime} A^{\prime}$ and $C^{\prime} A^{\prime} F_{1}{ }^{\prime}$ is 1 , where $\quad f(A)=A^{\prime}, f(C)=C^{\prime}, f\left(F_{1}\right)=F_{1}{ }^{\prime}, f\left(F_{2}\right)=F_{2}{ }^{\prime}$. This implies that $A^{\prime} F_{1}{ }^{\prime} F_{2}{ }^{\prime} C^{\prime}$ is a rectangle, see (Lester 1985). Finally one can easily see that $A^{\prime} F_{1}^{\prime} \perp F_{1}^{\prime} F_{2}^{\prime}$. This yields us $f\left(l_{1}\right) \perp f\left(l_{2}\right)$ which finishes the proof.
Lemma 2.3: Let f be an injection from Euclidean space $E^{n}(2<n<\infty)$ to itself which preserves triangles of perimeter 1 and a, c be two positive real numbers satisfying $a+c=\frac{1}{2}$ and $0<c<\frac{1}{4}<a<\frac{1}{2}$. If A and B are two points satisfying $|A-B|=1-\frac{c}{a}$ then f preserves the midpoint of A and B.
Proof: Let F_{1} and F_{2} be two distinct points in E^{n} satisfying $0<\left|F_{1}-F_{2}\right|<\frac{1}{2}$. Now construct the n-dimensional rotated ellipsoid Ω with focal points F_{1}, F_{2} in the same way as in the proof of Lemma 2.1 and Corollary 2.1. Let K and L be the vertices of Ω. Then for each point X of Ω such that $K \neq X \neq L$, the perimeter of the triangle $X F_{1} F_{2}$ is 1. Clearly, there exists appropriate points of Ω to get an orthogonal basis of E^{n}. More precisely, there exists some points on Ω, say $X_{1}, X_{2}, \cdots, X_{n-1}$ such that the set

$$
\theta_{1}=\left\{\overrightarrow{F_{1} F_{2}}, \overrightarrow{F_{1} X_{1}}, \overrightarrow{F_{1} X_{2}}, \cdots, \overrightarrow{F_{1} X_{n-1}}\right\}
$$

is an orthogonal basis of E^{n}. Clearly $K \neq X_{j} \neq L$ for each $j \in\{1,2, \cdots, n-1\}$. In addition to this the set

$$
\theta_{2}=\left\{\overrightarrow{F_{1} F_{2}}, \overrightarrow{F_{1} Y_{1}}, \overrightarrow{F_{1} X_{2}}, \cdots, \overrightarrow{F_{1} X_{n-1}}\right\}
$$

is also an orthogonal basis of E^{n} where $\overrightarrow{F_{1} Y_{1}}=-\overrightarrow{F_{1} X_{1}}$. Since f preserves the right angles by Lemma 2.2, it is clear that the sets
and
are also orthogonal bases of E^{n} where $f\left(Y_{1}\right)=Y_{1}{ }^{\prime}$, $f\left(F_{i}\right)=F_{i}{ }^{\prime}$ and $f\left(X_{j}\right)=X_{j}^{\prime}$ for $\forall i \in\{1,2\}$ and for $\forall j \in\{1,2, \cdots, n-1\}$. Since f is injective and it preserves the triangles of perimeter 1 , one can easily see that $\overrightarrow{F_{1}{ }^{\prime} Y_{1}{ }^{\prime}}=-\overrightarrow{F_{1}{ }^{\prime} X_{1}{ }^{\prime}}$ and this implies that $F_{1}{ }^{\prime}$ is the midpoint of $X_{1}{ }^{\prime}$ and $Y_{1}{ }^{\prime}$.
Corollary 2.2. Let f be an injection from Euclidean space $E^{n}(2<n<\infty)$ to itself which preserves triangles of perimeter 1. Then f preserves the Euclidean lines, i.e. f is affine.
Now we are ready to give the general proof of Theorem 1.4 for $2 \leq n<\infty$.
Proof of Theorem 1.4: Let $A B C$ be an equailateral triangle with perimeter 1 and denote the midpoints of the sides of $A B C$ by $M_{A B}, M_{B C}$ and $M_{A C}$. Clearly $A M_{B C} \perp B C, B M_{A C} \perp A C$ and $C M_{A B} \perp A B$. Since f preserves the right angles by Lemma 2.2, we get $A^{\prime} M_{B C}^{\prime} \perp B^{\prime} C^{\prime}, B^{\prime} M_{A C}^{\prime} \perp A^{\prime} C^{\prime} \quad$ and $\quad C^{\prime} M_{A B}^{\prime} \perp A^{\prime} B^{\prime}$ where $\quad M_{A B}^{\prime}=f\left(M_{A B}\right), M_{A C}^{\prime}=f\left(M_{A C}\right)$ and $\quad M_{B C}^{\prime}=f\left(M_{B C}\right)$. Moreover by Lemma 2.3, $M_{A B}^{\prime}, M_{B C}^{\prime}$, and $M_{A C}^{\prime}$ are the midpoints of the sides of $A^{\prime} B^{\prime} C^{\prime}$ More precisely

$$
M_{A B}^{\prime}=\frac{A^{\prime}+B^{\prime}}{2}, M_{B C}^{\prime}=\frac{B^{\prime}+C^{\prime}}{2}, M_{A C}^{\prime}=\frac{A^{\prime}+C^{\prime}}{2}
$$

holds. This yields us that the triangle $A^{\prime} B^{\prime} C^{\prime}$ must be an equilateral triangle of perimeter 1. Hence we get $\left|A^{\prime}-B^{\prime}\right|=\left|A^{\prime}-C^{\prime}\right|=\left|B^{\prime}-C^{\prime}\right|=\frac{1}{3}$. Finally we see that f preserves the distance $\frac{1}{3}$. From the Beckman-Quarles theorem (Beckman and Quarles 1953) f must be a motion of E^{n}. It is easy to see that the method we used in the proof of Theorem 1.4 is valid for the proof of Theorem 1.3.

References

Beckman F. S. and Quarles D. A.: On isometries of Euclidean spaces. Proc. Amer. Math. Soc. 4, 810-815 (1953). https://doi.org/10.2307/2032415

Lester, J. A.: Euclidean plane point transformations preserving unit area or unit perimeter. Arch. Math. (Basel) 45, 561-564 (1985). https://doi.org/10.1007/bf01194898
Lester, J. A.: Martin's the or em for Euclidean -space and a generalization to the perimeter case. J. Geom. 27, 29-35 (1986).
https://doi.org/10.1007/bf01230332

Mathematical Journal of Interdisciplinary Sciences

Chitkara University, Saraswati Kendra, SCO 160-161, Sector 9-C,
Chandigarh, 160009, India

[^0]
[^0]: Volume 8, Issue 2
 March 2020
 ISSN 2278-9561
 Copyright: [© 2020 O. Demirel et al.] This is an Open Access article published in Mathematical Journal of Interdisciplinary Sciences by Chitkara University Publications. It is published with a Creative Commons Attribution- CC-BY 4.0 International License. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

