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The Multiplicative topological indices of Phenylenic, Naphatalenic, Anthracene and Tetracenic 
Nanotubes are calculated. The indices like Multiplicative Zagreb, Multiplicative Hyper-Zagreb, 
Multiplicative Sum connectivity, Multiplicative product connectivity, General multiplicative Zagreb, 
Multiplicative ABC and Multiplicative GA indices are expressed as a closed formula for the known 
values of s, t. The proposed formulae will be very useful for the study of nanostructure in the field of 
nanotechnology.
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1. Introduction
A molecular graph is defined as a simple graph in which 
the vertices represent the atoms and the edges represent the 
bonds between the atoms. Graph theory is a developing 
branch of Mathematics. From the Mathematical modeling 
of the chemical compound, we can apply the graph theory 
concepts to the graphs of chemical structure. The application 
of graph theory is a powerful tool for studying in QSPR 
and QSAR. Topological indices are invariant values given by 
the structure of chemical compounds, which correlates with 
their physic-chemical properties. Phenylenic nanotubes 
have cycles of length 4, 6 and 8. The cycles are arranged 
in the alternating manner. The structure of nanotubes is 
either a cylinder or in the form of a torus. Naphatalenic 
nanotubes have cycles of length 4, 6 and 8. The first row 
of the Naphatalenic nanotubes contains only C4 and C6. 
Similarly, the second row contains the sequences of cycles of 

length 6 and 8. So we can say that it is a lattice containing 
the cycles of length 4, 6 and 8, and it is a plane. The entire 
structure can cover either a cylinder or torus. Anthracene is 
denoted by the formula C14H10, which is a solid polycyclic 
aromatic hydrocarbon. It consists of 3 benzene rings 
which are fused. It is also known as cool tar. It is used in 
the production of dyes like red alizarin. Tetracenic is also a 
polycyclic aromatic hydrocarbon. It appeared to be orange 
powder light in color. The chemical graphs of Phenylenic, 
Naphatalenic, Anthracene and Tetracenic Nanotubes are 
shown in the Figures 1, 2, 3 and 4. 

Let H denotes the given graph. The set of vertices 
represented by V(H) and the set of edges represented by 
E(H). Also dH(v) be the degree of vertex v which is the 
number of vertices adjacent to v. The indices formulas 
are listed below as a ready reckoned for the calculation of 
multiplicative invariants.

Name of the Multiplicative indices Formulae Reference Number

First multiplicative Zagreb index
2

1
( )

( ) ( ) ,H
u E H

II H d u
∈

= ∏ Todeshine et. al. (2010), 
Gutman (2011) 

Second multiplicative Zagreb index 2
( )

( ) ( ) ( ).H H
uv E H

II H d u d v
∈

= ∏ Todeshine et. al. (2010), 
Gutman (2011)
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New multiplicative version of the first Zagreb index
*

1
( )

( ) [ ( ) ( )]H H
uv E H

II H d u d v
∈

= +∏ Eliasi et. al. (2012)

First multiplicative hyper-Zagreb index
2

1
( )

( ) [ ( ) ( )]H H
uv E H

HII H d u d v
∈

= +∏ Kulli (2016a)

Second multiplicative hyper-Zagreb index
2

2
( )

( ) [ ( ) ( )] .H H
uv E H

HII H d u d v
∈

= ∏ Kulli (2016a)

General first multiplicative Zagreb index 1
( )

( ) [ ( ) ( )]a a
H H

uv E H

MZ H d u d v
∈

= +∏ Kulli 

General second multiplicative Zagreb index 2
( )

( ) [ ( ) ( )]a a
H H

uv E H

MZ H d u d v
∈

= ∏ Kulli 

Randic index
( )

1
( ) .

( ) ( )uv E H H H

H
d u d v

χ
∈

= ∑ Randic (1975)

Multiplicative sum connectivity index
( )

1
( ) .

( ) ( )uv E H H H

XII H
d u d v∈

=
+

∏ Kulli (2016b)

Multiplicative product connectivity index
( )

1
( ) .

( ) ( )uv E H H H

II H
d u d v

χ
∈

= ∏ Kulli (2016b)

Multiplicative atom bond connectivity index
( )

( ) ( ) 2
( ) .

( ) ( )
H H

uv E H H H

d u d v
ABCII H

d u d v∈

+ −
= ∏ Kulli (2016b)

Multiplicative geometric-arithmetic index
( )

2 ( ) ( )
( )

( ) ( )
H H

uv E H H H

d u d v
GAII H

d u d v∈

=
+∏ Kulli (2016b)

General multiplicative geometric-arithmetic index
( )

2 ( ) ( )
( )

( ) ( )

a

H Ha

uv E H H H

d u d v
GA II H

d u d v∈

  =   + 
∏ Kulli (2016b)

Many literatures (Veylaki et. al. 2015), (Wei Gao 2017), 
(Farahani 2015), (Kulli 2018), (Imran Nadeem et. al. 2016), 
(Liu et. al. 2016), (Wei Geo et. al. 2017) are available in 
the study of topological indices based on additive and 
multiplicative indices. Recently these topological invariants 
of nanotubes correlates perfectly with the properties of 
nanotubes (Doslic et. al. 2011), (Vukicevic et. al. 2011), 
(Diudea 2010), (Diudea 2006). Therefore, the studies 
of four different types of nanotubes are selected and their 
topological invariants are computed and explained with their 
structures to the field of nanotechnology.

2. Results and Discussion

2.1 Results for V-Phenylenic nanotubes (VP)
This type of nanotubes is defined as VPHX[s, t]. Here 
s- number of joining hexagons in row first and t -number

of another hexagons in column first. These nanotubes are 
defined in figure 1.

Figure 1
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Lemma 2.1. Let [ , ]VPHX s t  is the V-Phenylenic nanotubes, the 
vertex cardinality is | ( ) | 6 .V P st= ( , 1)s t > .

Lemma 2.2 Let [ , ]VPHX s t  is the V-Phenylenic nanotubes, the 
edge cardinality is | ( ) | 9 .E P st s= − ( , 1)s t > .

Table 1: The following table shows the edges partitions by degrees 
of every edge in Phenylenic nanotubes.

( ), ( )d a d b  where ( )ab E P∈ 2| |E 3| |E

Total edges 4s 9 5st s−

2.2 Results for V-Naphatalenic Nanotubes (VN)
This type of nanotubes is defined as [ , ].NPHX s t  Here 
s-number of joining hexagons in row first and t-number
of another hexagons in column first. These nanotubes are
defined in figure 2.

Figure 2

Lemma 2.3. Let [ , ]VPHX s t  is the N-Naphatalenic nanotubes, 
the vertex cardinality is | ( ) | 10 .V N st= ( , 1)s t >

Lemma 2.4 Let [ , ]VPHX s t  is the N-Naphatalenic nanotubes, the 
edge cardinality is | ( ) | 15 2 .E N st s= − ( , 1)s t > .

Table 2: The following table shows the edges partitions by degrees 
of every edge in Naphatalenic nanotubes.

( ), ( )d a d b  where ( )ab E N∈ 2| |E 3| |E

Total edges 8s 15 10st s−

2.3 Results for V-Anthracene Nanotubes (VA)
This type is defined as Anthracene [ , ].s t  Here s- number 
of joining hexagons in row first and t -number of another 
hexagons in column first. These nanotubes are defined in 
figure 3.

Figure 3

Lemma 2.5. Let V-Anthracene nanotubes, the vertex cardinality is
| ( ) | 14 .V A st= ( , 1)s t > .

Lemma 2.6. Let V-Anthracene nanotubes, the edge cardinality is
| ( ) | 21 3 .E A st s= − ( , 1)s t > .

Table 3: The following table shows the edges partitions by degrees 
of every edge in Anthracene nanotubes.

( ), ( )d a d b  where ( )ab E A∈ 2| |E 3| |E

Total edges 12s 12 15st s−

2.4 Results for V-Tetracenic (VT)
This type is defined Tetracenic [ , ].s t  Here s-number of joining 
hexagons in row first and t -number of another hexagons in 
column first. These nanotubes are defined in figure 4.

Figure 4

Lemma 2.7. Let V-Tetracenic nanotubes, the vertex cardinality is
| ( ) | 18 .V T st= ( , 1)s t > .
Lemma 2.8. Let V-Tetracenic nanotubes, the edge cardinality is
| ( ) | 27 4 .E T st s= − ( , 1)s t > .

Table 4: The following table shows the edges partitions by degrees 
of every edge in Tetracenic nanotubes

( ), ( )d a d b  where ( )ab E T∈ 2| |E 3| |E

Total edges 16s 27 20st s−
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Table 5: Computing number of edges and vertices based on Hexagons:

Nanostructure R | |V | |E 2| |E 3| |E

V-Phenylenic 1 6st 9st s− 4s 9 5st s−

V-Naphatalenic 2 10st 15 2st s− 8s 15 10st s−

V-Anthracene 3 14st 21 3st s− 12s 21 15st s−

V-Tetracenic 4 18st 27 4st s− 16s 27 20st s−

Generalizing the results by using an algebraic method, we 
obtain | | (4 2) ,V R st= + | | (6 3) ,E R st sR= + −  2| | 4E sR=
and 3| | (6 3) 5E R st sR= + − . Here R denotes the Number 
of Hexagons in the corresponding rows also columns in the 
nanotubes mentioned above.

Theorem 2.9. Let H be 2-dimensional lattice of any of the 
nanostructure (Phenylenic, Naphatalenic, Anthracene and 
Tetracenic). Then,

(1). * 4 (6 3) 5
1 ( ) 5 6sR R st sRII H + −= ×

(2). 4 (6 3)2 6
2 ( ) 2 3sT R st sRII H + −= ×

(3). 8 (6 3)2 10
1( ) 5 6sR R st sRHII H + −= ×

(4). 8 (6 3)4 12
2 ( ) 2 3sR R st sRHII H + −= ×

(5).
(6 3) 521 1

( )
5 6

R st sRsR

XII H
+ −    = ×       

(6). 2 3 (6 3)( ) 2 3sR sR R stII Hχ − − += ×

(7). 4 (6 3) 5
1 ( ) 5 6a sRa R sta sRaMZ H + −= ×

(8). 4 (6 3)2 6
2 ( ) 2 3a sRa R sta sRaMZ H + −= ×

(9). (6 3) 7 5 (6 3)( ) 2 3R st sR sR R stABCII H + − − += ×

(10). 
4

2 6
( )

5

sR

GAII H
  =    

(11). 
4

2 6
( )

5

saR

aGA II H
  =    

Proof. By using the definitions of multiplicative indices and 
the proposed results from the table5, we get the following 
results:

(1). *
1

( )

( ) [ ( ) ( )]H H
uv E H

II H d u d v
∈

= +∏

2 3

5 6
uv E uv E∈ ∈

= ×∏ ∏  4 (6 3) 55 6sR R st sR+ −= ×

Inference 1

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

*
1 ( )II H 4 9 55 6s st s−× 8 15 105 6s st s−× 12 21 155 6s st s−× 16 27 205 6s st s−×

(2). 2
( )

( ) ( ) ( )H H
uv E H

II H d u d v
∈

= ∏

2 3

6 9
uv E uv E∈ ∈

= ×∏ ∏

4 (6 3) 56 9sR R st sR+ −= ×
4 (6 3)2 62 3sR R st sR+ −= ×

Inference 2

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

2 ( )II H 4 18 62 3s st s−× 8 30 122 3s st s−× 12 42 182 3s st s−× 16 54 242 3s st s−×

(3).a  2
1

( )

( ) [ ( ) ( )]H H
uv E H

HII H d u d v
∈

= +∏
2 3

2 25 6
uv E uv E∈ ∈

= ×∏ ∏
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[ ]2 (6 3) 52(4 )5 6 R st sRsR + −= ×  
8 (6 3)2 105 6sR R st sR+ −= ×

Inference 3

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

1( )HII H 8 18 105 6s st s−× 16 30 205 6s st s−× 24 42 305 6s st s−× 32 54 405 6s st s−×

(4). 2
2

( )

( ) [ ( ) ( )]H H
uv E H

HII H d u d v
∈

= ∏
2

2 3

2
6 9

uv E uv E∈ ∈

= ×∏ ∏

[ ]2 (6 3) 52(4 )6 9 R st sRsR + −= ×

8 (6 3)4 122 3sR R st sR+ −= ×

Inference 4

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

2 ( )HII H 8 36 122 3s st s−× 16 60 242 3s st s−× 24 48 362 3s st s−× 32 108 482 3s st s−×

(5). 
( )

1
( ) .

( ) ( )uv E H H H

XII H
d u d v∈

=
+

∏

1 2 3

1 1 1
4 5 6uv E uv E uv E∈ ∈ ∈

= × ×∏ ∏ ∏

4 (6 3) 5
1 1
5 6

sR R st sR+ −     = ×       
(6 3) 521 1

5 6

R st sRsR + −    = ×       

Inference 5

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

( )XII H
9 521 1

5 6

st ss −     ×       

15 1041 1
5 6

st ss −     ×       

21 1561 1
5 6

st ss −     ×       

27 2081 1
5 6

st ss −     ×       

(6). 
( )

1
( ) .

( ) ( )uv E H H H

II H
d u d v

χ
∈

= ∏

2 3

1 1
6 9uv E uv E∈ ∈

= ×∏ ∏

(6 3) 54
1 1
6 9

R st sRsR + −     = ×       

2 3 (6 3)2 3sR sR R st− − += ×

Inference 6

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

( )II Hχ 2 3 92 3s s st− −× 4 6 152 3s s st− −× 6 9 212 3s s st− −× 8 12 272 3s s st− −×

(7). 
1

( )

( ) [ ( ) ( )]a a
H H

uv E H

MZ H d u d v
∈

= +∏

2 3

5 6
a a

uv E uv E∈ ∈

= ×∏ ∏

[ ](6 3) 5(4 )5 6a R st sRa sR + −= ×
4 (6 3) 55 6sRa R sta sRa+ −= ×

Inference 7

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

1 ( )aMZ H 4 9 55 6sa sta sa−× 8 15 105 6sa sta sa−× 12 21 155 6sa sta sa−× 16 27 205 6sa sta sa−×
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(8). 
2

( )

( ) [ ( ) ( )] .a a
H H

uv E H

MZ H d u d v
∈

= ∏

2 3

6 9
a a

uv E uv E∈ ∈

= ×∏ ∏

[ ](6 3) 5(4 )6 9 a R st sRa sR + −= ×
4 (6 3)2 62 3sRa R sta sRa+ −= ×

Inference 8

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

2 ( )aMZ H 4 18 62 3sa sta sa−× 8 30 122 3sa sta sa−× 12 42 182 3sa sta sa−× 16 54 242 3sa sta sa−× ⊕

(9). 
( )

( ) ( ) 2
( ) .

( ) ( )
H H

uv E H H H

d u d v
ABCII H

d u d v∈

+ −
= ∏

2 3

3 2 2 3 3 2
3 2 3 3uv E uv E∈ ∈

+ − + −
= ×

× ×∏ ∏

4 (6 3) 51 2
32

sT R st sR+ −     = ×      

(6 3) 7 5 (6 3)2 3R st sR sR R st+ − − += ×

Inference 9

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

( )ABCII H 9 7 5 92 3st s s st− −× 15 14 10 152 3st s s st− −× 21 21 5 212 3st s s st− −× 27 28 20 272 3st s s st− −×

(10). 
( )

2 ( ) ( )
( ) .

( ) ( )
H H

uv E H H H

d u d v
GAII H

d u d v∈

=
+∏

2 3

2 3 2 2 3 3
3 2 3 3uv E uv E∈ ∈

× ×
= ×

+ +∏ ∏

( )
4

(6 3) 52 6
1

5

sR
R st sR+ −

  = ×     
4

2 6
5

sR  =    

Inference 10

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

( )GAII H
4

2 6
5

s     

8
2 6

5

s     

12
2 6

5

s     

16
2 6

5

s     

(11). 
( )

2 ( ) ( )
( )

( ) ( )

a

H Ha

uv E H H H

d u d v
GA II H

d u d v∈

  =   + 
∏

2 3

2 3 2 2 3 3
3 2 3 3

a a

uv E uv E∈ ∈

   × ×   = ×      + +   
∏ ∏

( )[ ]
4

(6 3) 52 6
1

5

saR
a R st sR+ −

  = ×     
4

2 6
5

saR  =    

Inference 11

Nanostructure V-Phenylenic V-Naphatalenic V-Anthracene V-Tetracenic

( )aGA II H
4

2 6
5

sa     

8
2 6

5

sa     

12
2 6

5

sa     

16
2 6

5

sa     
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Conclusion
In this article, we have studied the Multiplicative indices 
of some nanostructures. The analytical expression for the 
topological invariants is presented by using edge set dividing 
method. Also, we expressed the generalized form for the 
computational formulas. These proposed results will be 
useful for the study of nanostructures. The results obtained 
in this study have a wide application prospect in nanoscience, 
biology, pharmacy and other fields.
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