

k-Contra Harmonic Mean Labeling of Snake Related Graphs

R Gopi

¹Department of Mathematics, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli - 620 005, Tamilnadu, India

Email: drrgmaths@gmail.com

ARTICLE INFORMATION	ABSTRACT
Received: 17 September, 2018 Revised: 11 October, 2018 Accepted: 06 February, 2019	A graph $G(p, q)$ is said to have a k-Contra Harmonic mean labeling if there exists an injection $f: V \to \{k-1, k, k+1,, k+q-1\}$ such that the induced map f is
Published online: March 6, 2019	_defined by $f^*(uv) = \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ or $\left \frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right $ is a bijection from E to
Keywords: k-Contra harmonic labeling, k-Contra harmonic graph, Triangular snake, Double Triangular snake.	$\{k, k+1,, k+q-1\}$. A graph that admits a <i>k</i> -Contra Harmonic Mean Labeling(k-CHML) is called <i>k</i> -Contra Harmonic Mean Graph(k-CHMG).
DOI: https://doi.org/1015415/mjis.2019.72010	

1. Introduction

In (Narasimhan *et. al.* 2013) introduced the Contra Harmonic mean labeling. In this paper we prove that some snake related graphs. Throughout this paper k denote any positive integer >0. For all other terminology and notations we follow (Harary 1988), (Gallian, 2018).

2. Main Results

Theorem 2.1

The graph $TS_m (m \ge 3)$ is a K-Contra Harmonic mean graph for any k.

Proof

Let $\{u_l, 1 \le l \le m, v_l, 1 \le l \le m-1\}$ be the vertices and $\{a_l, b_l, c_l, 1 \le l \le m-1\}$ be the edges which are denoted as in Figure 2.1. First we label the vertices: For $1 \le l \le m-1$ $f(v_l) = k+3l-3$ For $1 \le l \le m$ $f(u_l) = k+3l-4$ Then the induced edge labels are:

 $f^{*}(a_{1}) = k + 2$

For $2 \le l \le m-1$ $f^*(a_l) = k+3l-2$ $f^*(c_1) = k+1$

 $f^*(c_l) = k + 3l - 1$

For $1 \le l \le m - 1$ $f^*(b_l) = k + 3l - 3$

Figure 2.1. Ordinary labeling of *TS_m*

Hence, the edge labels are all distinct. 4-CHML of TS_5 is shown in Figure 2.2.

Figure 2.2: 4-CHML of *TS*₅

Theorem 2.2

The graph $A(TS_m)$ $(m \ge 4)$ is a k-Contra Harmonic mean graph for any k.

Proof

Let
$$\left\{u_l, 1 \le l \le m, v_l, 1 \le l \le \frac{m}{2}\right\}$$
 be the vertices and $\left\{a_l, 1 \le l \le m-1, b_l, c_l, 1 \le l \le \frac{m}{2}\right\}$ be the edges which are

denoted as in Figure 2.3.

Figure 2.3. Ordinary labeling of $A(TS_m)$

First we label the vertices:

For
$$1 \le l \le \frac{m}{2}$$
 $f(v_l) = k + 4l - 5$

For $1 \leq l \leq m$ $f(u_l) = k + 2l - 2$

Then the induced edge labels are:

$$f^*(a_1) = k+1$$

For $2 \le l \le m-1$

$$f^{*}(a_{l}) = \begin{cases} k+4l-6 & \text{if } l \text{ is odd} \\ k+2l-1 & \text{if } l \text{ is even} \end{cases}$$

For
$$1 \le l \le \frac{m}{2} f^*(b_l) = k + 4l - 4$$

$$f^*(c_1) = k+2$$

For $2 \le l \le \frac{m}{2} f^*(c_l) = k + 4l - 3$

Hence, the edge labels are all distinct. 7-CHML of $A(TS_4)$ is shown in Figure 2.4.

Figure 2.4. 4-CHML of $A(TS_4)$

Theorem 2.3

The graph $DA(TS_n)$ $(n \ge 4)$ is a *k*-Contra Harmonic mean graph for any *k*.

Proof

Let $\left\{u_l, v_l, 1 \le l \le \frac{n}{2}, w_l, 1 \le l \le n\right\}$ be the vertices and $\left\{a_l, 1 \le l \le n-1, b_l, c_l, d_l, e_l, 1 \le l \le \frac{n}{2}\right\}$ be the edges which are denoted as in Figure 2.5.

Figure 2.5: Ordinary labeling of *DA*(*TS*_{*n*})

First we label the vertices:

For
$$1 \le l \le \frac{n}{2} f(v_l) = k + 6l - 7$$
 $f(u_l) = k + 6l - 2$
 $f(w_l) = \begin{cases} k + 3l - 3 & \text{if } l \text{ is odd} \\ k + 3l - 4 & \text{if } l \text{ is even} \end{cases}$

Then the induced edge labels are:

$$f^{*}(a_{1}) = k + 1$$

For $2 \le l \le n - 1$ $f^{*}(a_{l}) = k + 3l - 1$
For $1 \le l \le \frac{n}{2}$ $f^{*}(b_{l}) = k + 6l - 6$
 $f^{*}(c_{1}) = k + 2$
For $2 \le l \le \frac{n}{2}$ $f^{*}(c_{l}) = k + 6l - 5$
 $f^{*}(d_{1}) = k + 4$

For
$$2 \le l \le \frac{n}{2}$$
 $f^*(d_l) = k + 6l - 3$
 $f^*(e_1) = k + 3$

For $2 \le l \le \frac{n}{2} f^*(e_l) = k + 6l - 2$

Hence, the edge labels are all distinct.

6-CHML of $DA(TS_4)$ shown in Figure 2.6.

Figure 2.6. 4-CHML of $DA(TS_4)$

Theorem 2.4

The graph QS_m is a k-Contra Harmonic mean graph for any k.

Proof

Let $\{u_l, 1 \le l \le m, v_l, 1 \le l \le 2m-2\}$ be the vertices and $\{a_l, b_l, c_l, d_l, 1 \le l \le m-1\}$ be the edges which are denoted as in Figure 2.7.

rigure 2.7. Ordinary labeling of Q

First we label the vertices:

For $1 \le l \le 2m - 2$ $f(v_l) = k + 2l - 2$

For $1 \le l \le m$ $f(u_l) = k + 4l - 5$

Then the induced edge labels are:

$$f^{*}(a_{1}) = k + 3$$

For $2 \le l \le m - 1$ $f^*(a_l) = k + 4l - 2$

For $1 \le l \le m - 1$ $f^*(b_l) = k + 4l - 4$

$$f^{*}(c_{1}) = k + 2$$

For $2 \le l \le m-1$ $f^*(c_l) = k+4l-1$

For
$$1 \le l \le m - 1$$
 $f^*(d_l) = k + 4l - 3$

Hence, the edge labels are all distinct. 2-CHML of QS_4 shown in Figure 2.8.

Theorem 2.5

The graph $A(QS_m)$ $(m \ge 4)$ is a *k*-Contra Harmonic mean graph for any *k*.

Proof

Let $\{u_l, v_l, 1 \le l \le m\}$ be the vertices and $\{a_l, b_l, c_l, 1 \le l \le \frac{m}{2}, d_l, 1 \le l \le m-1\}$ be the edges which are denoted as in Figure 2.9.

Figure 2.9. Ordinary labeling of $A(QS_m)$

First we label the vertices:

For
$$1 \le l \le m$$
 $f(v_l) = k + 4l - 5$

For
$$1 \le l \le m$$
 $f(u_l) = k + 2(l-1)$

Then the induced edge labels are:

For
$$1 \le l \le \frac{m}{2}$$
 $f^*(a_l) = k + 5l - 4$ $f^*(b_l) = k + 5(l - 1)$
 $f^*(c_1) = k + 2$
For $2 \le l \le \frac{m}{2}$ $f^*(c_i) = k + 5i - 2$
 $f^*(d_1) = k + 3$

For $2 \le l \le m-1$

$$f^{*}(d_{l}) = \begin{cases} \frac{2k+5l-1}{2} & \text{if } l \text{ is odd} \\ \frac{2k+5l-2}{2} & \text{if } l \text{ is even} \end{cases}$$

Hence, the edge labels are all distinct.

8-CHML of $A(QS_3)$ is shown in Figure 2.10.

ISSN No.: 2278-9561 (Print) ISSN No.: 2278-957X (Online) Registration No. : CHAENG/2013/49583

References

- Gallian, J. A. (2018). A dynamic survey of Graph labeling, The Electronics Journal of Combinatorics, #DS6.
- Harary, F. (1988). Graph Theory, Narosa Publishing House Reading, New Delhi.
- Narasimhan, G. Sampathkumar, R. (2013). Contra Harmonic Mean Labeling of Graphs, Mapana-Journal of Sciences, **12(8)**, 23–29. https://doi.org/10.12723/mjs.26.7