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Abstract R-unions and R-intersections, R-OR, R-AND of Neutrosophic soft
cubic sets are introduced and related properties are investigated. We show
that the R-union (R-intersection) of internal neutrosophic soft cubic set is also
an internal neutrosophic soft cubic set. We show that the R-union and the
R-intersection T-external (I-external, F-external) neutrosophic soft cubic sets
are also T-external ( I-external, F-external) neutrosophic soft cubic sets. The
conditions for the R-intersection of two cubic soft sets to be both an external
neutrosophic soft cubic set and an internal neutrosophic soft cubic set. Further
we provide a condition for the R- intersection and R union of two T-internal
(I-internal, F-internal) neutrosophic soft cubic sets are T-external (I-external,
F-external) neutrosophic soft cubic sets.

Keywords: Neutrosophic soft cubic set, T-internal (resp. I- internal, F-internal)
neutrosophic soft cubic sets, T-external (resp. I- external, F-external)
neutrosophic soft cubic set, R-union, R-intersection of neutrosophic soft cubic
set.

1. INTRODUCTION

Every real situation does not have a crisp or an exact solution hence there is

some degree of uncertainty. To deal with uncertainty many Mathematician

developed many theories. In 1965 Zadeh [19] introduced the concept of Fuzzy

set were we consider the degree of belongingness to a set as a membership Mathematical Journal of
. . P . Interdisciplinary Sciences

function. Following him in 1986 Atanassov [3] introduced the degree of non
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membership and defined intuitionistic fuzzy set. Further researches were done March 2018
in these fields but these two sets were not enough to meet all the uncertainties in pp. 93-117
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real physical problems. Hence In 1995 Smarandache [5, 6] coined neutrosophic
logic and neutrosophic sets to deal with truth , indeterminate and falsehood.
On other hand in 1999 Molodtsov [4] introduced soft set which helps the view
an environment in a parameterized manner. Pabita Kumar Majii [5-7] had
combined the Neutrosophic set with soft sets and introduced ‘Neutrosophic
soft set’. Y. B. Jun et al. [16-18] coined cubic set by using a fuzzy set and an
interval-valued fuzzy set, and also extended the concept of cubic sets to the
neutrosophic cubic sets. . [1] Introduced neutrosophic soft cubic set and the
notion of truth-internal (indeterminacy-internal, falsity-internal) neutrosophic
soft cubic sets and truth-external (indeterminacy-internal, falsity-internal)
neutrosophic soft cubic sets.

As acontinuation of the paper [ 1] we consider R-unions and R-intersections
of T-external (I-external, F-external) neutrosophic soft cubic sets. We provide
examples to show that the R-intersection and the R-union of T-external (resp.
I-external and F-external) neutrosophic soft cubic sets may not be a T-external
(resp. I-external and F-external) neutrosophic soft cubic set. We also discuss
conditions for the R-union of T-external (resp. I-external and F-external)
neutrosophic soft cubic sets to be a T-external (resp. [-external and F-external)
neutrosophic soft cubic set. Further the condition for the R-intersection of
T-external (resp. [-external and F-external) neutrosophic soft cubic sets to be a
T-external (resp. I-external and F-external) neutrosophic soft cubic set.

2. PRELIMINARIES

2.1 Definition [19] Let E be a universe. Then a fuzzy set p over E is defined
by X ={p (x)/x: x e E }where p_is called membership function of X and
defined by u _: E — [0,1]. For each x E, the value p (x) represents the degree
of x belonging to the fuzzy set X.

2.2 Definition: [16] Let X be a non-empty set. By a cubic set, we mean a
structure = = {(x, A(x), 1(x)) | x€ X } in which A is an interval valued fuzzy
set (IVF) and p is a fuzzy set. It is denoted by <A, u) .

2.3 Definition: [5] Let U be an initial universe set and E be a set of parameters.
Consider A c E. Let P (U) denotes the set of all neutrosophic sets of U. The
collection (F, A) is termed to be the soft neutrosophic set over U, where F is a
mapping given by F: A — P (U).

2.4 Definition: [9] Let X be an universe. Then a neutrosophic (NS) set A is an
object having the form A = {< x: T(x), [(x), F(x) >: x € X} where the functions
T, I, F: X — ][0, 14[ defines respectively the degree of Truth, the degree of
indeterminacy, and the degree of falsehood of the element x € X to the set A
with the condition.
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0 < Tx) + I(x) + F(x) < 3*

2.5 Definition: [15] Let X be a non-empty set. An interval neutrosophic
set (INS) A in X is characterized by the truth-membership function A, the
indeterminacy-membership function A and the falsity-membership function
A,. For each point x € X, A (x), A, (x), A, (x) C [0, 1].

For two INS

A = {<x, [A7(), AL TA(), A'X) 1. [A(x), A ()] x € X}

And

B = {<x, [B,(x), B,/()], [B,(x), B/(x)], [B, (x), B/ (X)]> x € X}

Then,

1. ACZB ifand only if

A ()< B (x), 47 ()< By (x)

4 (02 B; (x),4; ()2 B} (x)

A2 (x)> B, (x), A (x)= B:(x) for all x€ X.
2. A=B if and only if

A, (x)=B (x), 47 (x)=B; (x)

4, (x)= B, (x), 4/ (x) = B/ (x)

A, (x)= B, (x), 4. (x) = B.(x) forall x € X.
3. AC={<x[ AL, ALL [A), AT GOLIAG(x), AL)] > x € X}

4. A4 A B={<x,[min{A;(x), B;(x)} , min{A(x), B;(x)}],
[max{A; (x), B; (x)}, max{A; (x), B] %)},
[max {A; (x), B (x)}., max{A; (x), B; (x)}]>: x € X }

5. AU B={<x,[max{A;(x), By(x)} , max{A;(x), Bi(x)}],
[min {A; (x), B, (x)}, min{A; (x). B (x)}],
[min{A; (x), B;(x)}, min{A;(x), B;(x)}]>:xe X}

2.6. Definition: [1]
Let X be an initial universe set. Let NC(X) denote the set of all
neutrosophic cubic sets and E be the set of parameters. Let ACE

then (P,A)={P(e, ) = {<x,4e;(x),Ae;(x) > x € X}e, €A}, where
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Ae;(x) ={<x, Aef (x),A(fi (x),Aef (x)>/xe X},is an interval neutrosophic
set, Ae,(x) ={<x,(\ (x),A (x),A (x)>/xe X} is a neutrosophic set. The

pair (P, A) is termed to be the neutrosophic soft cubic set over X where P is a
mapping given by p: A - NC(X) .

2.7 Definition: [1]

Let X be an initial universe set. A neutrosophic soft cubic set (PM) in X is said
to be

e truth-internal (briefly, T-internal) if the following inequality is valid

(VxeX,e €F) (A%T(x)ﬁ)\; (x)SA%T(x)), (2.1)

e indeterminacy-internal (briefly, I-internal) if the following inequality is
valid

(VxeX,e eE) (A '(x)< )\ (x) <47 (%)), 2.2)
e falsity-internal (briefly, F-internal) if the following inequality is valid

(VxeX,e eE)(Ae;F (x)< )\; (x)SA;l_F (x)). (2.3)

If a neutrosophic soft cubic set in X satisfies (2.1), (2.2) and (2.3) we say that
(P.M) is an internal neutrosophic soft cubic in X.

2.8 Definition: [1]
Let X an initial universe set. A neutrosophic soft cubic set (PM) in X is said
to be

. truth-external (briefly, T-external) if the following inequality is valid

(VxeX,e €F) ()\ETI (x)eE(Ae_iT (x),Aet_T (x))), 24

* indeterminacy-external (briefly, /-external) if the following inequality is
valid

(VxeX,e €k) (Aé (x)¢e (A;i’ (x),A:i' (X)), (2.5)
e falsity-external (briefly, F-external) if the following inequality is valid
(VxeX,eeE) (\ (x)e(4" (x), 4" (x))). (2.6)

If a neutrosophic soft cubic set (PM) in X satisfies (2.4),(2.5) and (2.6), we say
that (PM) is an external neutrosophic soft cubic in X.
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2.9 Definition [1]

Let (P,M)={P(e,)={<x, A, x),\, x)>:xe€ X} ¢, € M}

and (Q,N)={Q(e,)=B, = {<x,B, (), 4, (X)>:x¢€ X} e € N} betwo
neutrosophic soft cubic sets in X. Le{ M and 1N be any two subsets of E (set of
parameters), then we have the following

1.

(P.M) = (Q,N) if and only if the following conditions are satisfied

a) M= Nand

b) P(e;) =Q(g;) forall ¢, e M if and only if Ae(x)=B,(x) and
Ae;(X)=p1e;(x) forall xe X corresponding to each e, € M .

(P.M) and (Q,N) are two neutrosophic soft cubic set then we define
and denote P- order as (P,M) <, (Q,N) if and only if the following
conditions are satisfied

¢) M < Nand
d) P(e) <, Q(e;)forall e, e M if and only if Ae,(x)< Be,(x) and
Ae;(x) " pie;(x) for all xe X corresponding to each e, € M .

(P.M) and (Q,N) are two neutrosophic soft cubic set then we define
and denote P- order as (P, M) <, (Q, N) if and only if the following
conditions are satisfied

e) M S Nand

f) P(e,) < Q(e,) forall e, e M if and only if Ae;(x)= Be;(x) and
Ae;(x) = pie,(x) forall xe X corresponding to each e, € M .

2.10 Definition: [1]

Let (P.M) and (Q,N) be two neutrosophic soft cubic sets (NSCS) in X where |
and J are any two subsets of the parametric set E. Then we define R-union of
neutrosophic soft cubic set as (P,M) U, (Q,N) = (H,C) where C=MUN

P(e) ifeee M—N
H(e,)=10(e) ifee N-M
P(e) vy O(e) ifee MAN

where P(e;) v, O(e;) is defined as
P(e)v, Oe)

{<x,max{A (x),B, ®)},(AAp )x)>:xe Xje,eMNN

where A, (x),B, (x) represent interval neutrosophic sets. Hence
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T T _ T T T T . \
o pN P)Ve0T(@) =t<x max{AT (B (3N Apl) (9> :xe X)

e, e MNN,

P'(e) v, 0'(e) ={<xmax{ Al (B (9}(N Ap)x)>:xe X]
e. e MNN, l l l l
P (e) v, 0 (e) ={<xmax{ A" (x)B" (LA Ap')x)>:xe X]
e, € MNN. ) K ) K

2.11 Definition: [1]
Let (P,M) and (Q,N) be two neutrosophic soft cubic sets (NSCS) in X where
M and N are any subsets of parameter’s set E.

Then we define R-intersection of neutrosophic soft cubic set as
(P,M) N, (Q,N)=(H,C) where C=MnNN,

H(ei) :P(ei)/\R Q(ei)

H(e)=P(e)r, O(e,) and e;€ INJ.Here F(e,) n, G(e) is defined as

P(e)) Ay O(e) = H(e) = {<x, min{ A, (0B, (OL(A, v p,)¥)>:x e X}
e, e MNN.

where Aei (x),Bei (x) represent interval neutrosophic sets. Hence

Pi(e) 7 0" (e) ={<x,min{ AT (x).B] ()}, (A vpu') (x)>:xe X}
e, e MNN, ) ) ) )

Pl(e) ng 0'(e) ={<x min{ A" (x),B' (O}(A v ) >:xe X}
e, e MNN, ’ ) ’ )

Pf(e) ny O (e) ={<x, min{ AZA (x),B: (x)},( )\: Y ,u:) x)>:xe X}
e, e MNN 1 1 l 1

2.12 Definition: [2]

The complement of a neutrosophic soft cubic set

(F,D) = {F(e,) ={<x, Ag (X), de,(x)>:x € X} e, € I}is denoted by (F, n©
and defined as ! !

(F,D° =(F, ) =(F°, =) } , where F©:~I — NC(X) and

(F,T) “= {(F(e,)® ={<x, Agi(x), Agi (0)>:xe X} e el},
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(F, 1) ¢ = {<x, ([1— AT 1= AT 1= A7 1= A1 - 477 ] —A;F]),
(1—A§,1—A;,1—Aj) >xe X} e el.

3. MORE ON R-UNION AND R-INTERSECTION OF NEUTROSOPHIC
SOFT CUBIC SET

Definition: 3.1

Let (P,M)={F(e,)={<x, A, (X), A (x)> xe X} e, € M} and
Q, )—{G(e)—{<XB (X) ,ue(x)> xe X} e, € N} be NSCS in X.
Then

1. R-OR of NSCS is denoted by (P,M)v, (O,N)and defined as
(P,M) v, (Q,N)=(H, MxN) where H(,;,0;) = P(a;)\U, O(5,) for
all(o,,3) e M x N.

2. R-AND of NSCS is denoted by (P,M) A, (Q,N)and defined as
(P, M) AR (O,N)=(H, MxN) where H(aiaﬁi) :F(ai)mR G(ﬂz) Jor
all(o;,3,) e M x N.

Example: 3.2

Let X = {X,, X,, X;} be initial universe and E = {e , e} parameter’s
set. Let (P,M) be a neutrosophic soft cubic set over X and defined as
(P.M) = {P(ei):{< x,Aei (x), )\ei x)>:xe X} e € M } and

More on R-Union
and R-Intersection
of Neutrosophic
Soft Cubic Set

X Pe,) P(e,)

<Ae (x), he(x)> <Ae,(x), he,(x)>

x. | [0.5,0.6][0.6,0.7][0.50.6] | [0.7.0.40.6] | [0.3,0.6][0.2,0.7][0.2,04] | [0.5,0.20.2]

x, | [0.4,0.5][0.7,0.8][0.2,0.3] | [0.6,04,0.2] | [0.3,0.5][0.6,0.8][0.2,0.6] | [0.6,0.5,0.4]

x. | [0.2,0.3][0.2,0.3][0.3,0.5] | [0.50.3,0.5] | [0.4,0.7][0.2,0.5][0.3,0.6] | [0.7,0.3.0.4]

(Q.N)={G(e) = {<x, B, (), s, (x)>:x€ X} ¢ € N}

X ) Qee,)

<Be, (%), pe(x) > < Aeyx), pe,(x) >

x| [0.709][0.30.5][0.30.4] | [0.4050.6] | [0.40.7][0.10.3][0.10.2] | [03.0404]

x, | [0.5,0.6][0.3,0.7][0.1,0.2] | [0.5,0.6,0.6] | [0.4,0.6][0.4,0.7][0.2,0.5] | [0.4,0.7,0.5]

x. | [0.30.4][0.10.2][020.4] | [03.0.4,0.6] | [0.50.8][0.10.4][0.10.4] | [0.50.6,0.6]

R-OR is denoted by (H, MxN) =(P,M)vp (Q,N) where
MxN={(e . (e €,)(e, € ), ¢, )}isdefined
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X He ¢) H(e, €, H(e,e) H(e,€,)
P(e)nQ(e) P(e)nQO(e,) P(e,)NQO(e)) P(e,)nQO(e,)

x,| [0.70.9] [[04,0.40.6]]|[0.50.6]|[03,0404]|[0.709] [[0.40.2,0.2]| [0.4,00.7] |[0.3,0.2,0.2]
[0.6,0.7] [0.6,0.7] [0.3,0.5] [0.2,0.7]
[0.5,0.6] [0.5,0.6] [0.3,04] [0.2,0.4]

x, | [0.5,0.6] [[0.504,0.2]| [040.6] [[0404,0.2]]|[050.6] [[0.50.5,0.4]| [04,0.6] |[0.40.50.4]
[0.7,0.8] [0.7,0.8] [0.6,0.8] [0.6,0.8]
[0.2,0.3] [0.2,0.5] [0.2,0.6] [0.2,0.6]

X, | [0.3,04] |[035,0.3,0.5]| [0.50.8] {[0.50.3,0.5]| [0.4,0.7] [[0.3,0.3,0.4]| [0.5,0.8] |[0.50.3,0.4]
[0.2,0.3] [0.2,0.3] [0.2,05] [0.2,0.5]
[0.3,0.5] [0.3,0.5] [0.3,06] [0.3,0.6]

R-AND is denoted by (H, M xXN) =(P,M)Ap (Q,N) where
XN= i
MXxN {(e1 © ),(e1 ©, ),(e2 €| ),(e2 ©, ) }isdefined
X H(e, ) H(e, €,) H(e,.€) H(e,.€,)
P(e)n0(e) | Ple)n0O(e,) | Ple,)N0O(e) P(e,)n0(e,)

x, [10,50.6]|[0.7,0.50.6] [[0.40.7]| [0.50.50.6] |[0.3,0.6]|[0.704,0.5] | [0.3,0.6] | [0.50.4,04]
[0.3,0.5] [0.1,0.3] [0.2,0.7] [0.1,0.3]
[0.3,0.4] [0.1,0.2] [0.2,0.4] [0.1,0.2]

X, [ [0.4,0.5] {[0..6,0.6,0.6] |[0.4,0.5]| [[0.6,0.6,0.6] | [0.3,0.5] |[0..6,0.7,0.5] | [0.3,0.5] | [0.6,0.7,0.5]
[0.3,0.7] [0.4,0.7] [0.3,0.7] [0.4,0.7]
[0.1,0.2] [0.2,0.3] [0.1,0.2] [0.2,0.5]

X, [0.2,0.3] | [0.504,0.6] [[0.2,0.3]] [0.7,04,0.6] |[0.3,04][0.5,0.6,0.6] | [0.4,0.7] | [0.7,0.6,0.6]
[0.1,0.2] [0.1,0.4] [0.1,0.2] [0.1,0.4]
[0.2,0.4] [0.1,0.4] [0.2,0.4] [0.1,0.4]

Proposition: 3.3 Let X be initial universe and I,J,L. and S subsets of E. Then for
any neutrosophic soft cubic sets A =(F,I),B=(G,J),C=(E,L),D=(T,S)
the following properties hold

(1) if Acx B and B, C then Ac, C .
(2) if Ac, B then B ¢, A"
3)if Ac,B and Ac, C then Ac, Bn,C.
@) it AcyB and Cc; B then A, Cc, B.
5)if AcyBand Cc; D then AU, Cc, Bu,D and An,Cc,

Bu,D.

Proof: Straight forward.
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Theorem: 3.4
Let (PM) and (QN) be INSCS over X such that
max{4," (x),B," (x)}< (A" Apl )(x). max{4" (x), B,  (xp< (A Ap' ).

max{4 " (x),B," (x)}< (A" Ap" )(x)forall e, eMNN and forall xeX,

then (P, M) U, (Q,N) is also an INSCS.
Proof:
Since (P,M) and (Q,N) is an INSCS.

So far (PM) we have A" (x)S A, (x)< 4" (x) A (SN () <A (x),
A;F (X)S A; (X)S A;;F (x) for all e, € M and for all x e X.

And for (QN) we have B, (x)< . (x)< B!" () B (x)< p; (x) < B (%),
B;F (x)< ,ug (x)< BZI,F (x) forall e, € Nand for all xe X.

A" Ap)(x) <max {4 (x).B]" (x)}, (A Ap )x) < max{d! (x),B] (x)}.
(N Apf @ <maxtd’ ()8 (x)

for all eil € M and for all xe X. Also given that max{A;T (x),Be’iT (x)}<
( )\Z /\,u: )(x) maX{Ae"l_I (x),B;iI (x)}S( )\; A u; ) ,max{Ae_l_F (x),Be_l_F (x)}S
()\5 /\,uf_ )(x) for all e, € M NN and for allxe X . Now (P,M)u,
(O,N)=(H,C) where MUN = Cand

P(e,) if ee M—N
H(e;) = O(e,) if ee N-M
Ple,) v, Ole,) if ecMAN

If ee M N ,then P(e;) v, O(e,) is defined as
P(e,) vy Ole))=H(e,)={<x, max{4, (x).B, (x)}.(\, Ap, )x).x € X,

e, eM N}

where
Pl(e) v, O'(e) = {< X, maX{AZ(X),Bf(X)},()\i AMZ )(x),x€ X,

e,.eMmN}
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Ple)vy Q') = {<nmaxid 0.8 (03O Al )xe,

e,.eMmN}

’

P(e) vy (e = {<mmaxtd” (B (L A xe X,
el.eMr\N}

Since (P.M) and (Q.,N) are INSCS so from above given condition and definition of
an INSCS we can write,max {4, (x),B." (x)}<( A" Ap' )(x)<max{4 (x),

BT (x)y s max {4, (x).B, (< (N Apl )@) <max {4 (x).B] (x)}

max {4, " (x),B," (x)}<( )\CF_ A ,u: )(x) S max {4 " (x),B" (x)} forall

e; € MNN and for all xe X. Iflei € M—-N ore € N—M then the result
is trivial. Thus (P, M) U, (Q,N) = (H,C) is an INSCS if that max {4 " ()C),B;7
(x)r<( )\Z A uz )x), max{4;’ (x),B." (x)}<( )\:‘ A u: )(x), max{4. " (x),
B (< (A Apf ().

Theorem 3.5
Let (P,M)={P(e;,) ={<x, A, (X), )\ (x)>:x€ X} ¢, € M} and

Q. N)={Q(¢,)={<x,B, (x), p, (x)>:x€ X} e, € N}be INSCS in X
satisfying the following inequality min{A4;" (x),B;" (x)}= (A" vpu' )(x),

min{4;" (x), B (x)y= (X vl ) X)min 47 (x), B (x> (A v " )(x)
for all e, € M Nand folr all ;4 € X. Then EP, M) mlR (O,N) i;ian IIfIiSCS.
Proof:

Let (P,M) = {P(e,) ={<x, ACi x), )\Ci (x)>:xe X} e, € M }and
(Q.N)={Qle) = {<x,B, ()4, (x)>:xe X} ¢, € NJ.Then by
definition of an INSCS we have A;T (x)< )\ZI_ (x)< A:l_T (x),
Ae__l (x)< )\; (x) < A:_I (x), A;F (X)S )\: (x) < A:_F (x) for all e, € Mand
f(;r all x € IX. And’ B;T (x)lS ,ueTi (x) SI B:l_T (x) I, Be_i](x) < ué_ (x) < B;l_l (x),

B* (X)S /LeFi (X)S B;;F (X) for all e, € Nand for all xe X. This implies ,

1
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min{4." (x),B," (x)}< (A" vl )(x) min{d"(x),B." (x)}<(X vu')(x)
min{4," (x),B." (x)}<( )\: v Mfi )(x) :for alle, e M N Nandforallx e X
Alsosince (P, M) M, (Q,N)= (H,C) where MAN = C, H(e,) = P(e,) A,
O(e,) if ee M N then P(e,) A, Oe,) is defined as

Pe;) np Qe;)=H(e;) = {< x, min{4, (x),B, (x)},(A, v, )(x),x€X,
¢,eM AN} Given condition max{4’" (x),B" (x)}=( V)
max {4 (x),B;" (x)}= (Al vp! ) (x) max{4"(x),B." (x)} 2 )\F v ;ﬁ ) (x).

b

for all e, € M Nand for all xe X. Thus from given condition and

definition of INSCS min{4" (x),B;iT(x)}S AT vl ) (x) < min{d;" (x)

e. e.
1 1

B;;T (x)} ) min{A;i' (x),B" (x)}S )\:. v ,u; ) (x) < min{A;:' (x),B” (x)}

min{4," (x),B," (x)}< A" vu" ) (x) Smin{4'" (x),B" (x)} for all e, €
MnNand for all xe X. Hence (P, M) Ny (Q,N) is an INSCS.

Example: 3.6

Let (P,/)and (Q,J) be T-external neutrosophic soft cubic sets (T-ENSCS)
in X where

(P, 1) = P(e,) ={<x, ([0.2,0.5],[0.5,0.7],[0.3,0.5]), (0.7,0.6,0.8) >e, e I}
Q. )=Q(e,) = {<x, ([0.6,0.8][0.6,0.7][0.7,0.9]), (0.9,0.7,0.3) >¢, € J}
forall x € X

Then (P,/)and (Q,J) areT-ENSCSinXand (P, I) U, (O,J)=(P,1)u(Q,J)=
PUQ() ={<x,([0.6,0.8][0.6,0.7],[0.7,0.9]), (0.7,0.6,0.3) >¢, €

INnJ} forall x € X.

(P, 1) U, (Q,J)is not an T-ENSCS since

(AZI Al )(x) =0.7€(0.6,0.8) = {(AeTl uBeTl )_(x) : ( AT U BeT1 )* (x)]

1
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From the above example it is clear that R-union of T-ENSCS may not be
T-ENSCS. We provide a condition for the R- union of T-external (resp.
I-external and F-external) neutrosophic soft cubic sets to be T-external (resp.
I-external and F- external) neutrosophic soft cubic set.

Theorem 3.7
Let (P,M)={P(e,)={<x, A, (x),\ x)>:x€ X} ¢, € M} and

Q. N)={Qe) = {<x,B, (), (x)>:x€ X} & € N} be T- ENSCSs
in X such that

- max{{min{A;T(x),B;T(x)},min{A;T(x),B;T(x)}},

()‘e. anl )(x) e i i i i

! ! rnin{ max{A;T(x),B;T(x)},max{A;T(x),B;T(x)}}
i i i i

(3.7)

for all e, € M andfor all e, eNand for all xe X. Then (P, M) U,
(O, N) is also an T- ENSCS.

Proof
Consider (P, M) U, (Q,N)=(H,C) where and MUN =C

P(e,) if ee M—N
H(ei) = Q(ei) if ee N-M
Ple,) v, Ole)) if ee MAN

where H(e,)= P(e,)v, O(e,) is defined as

Pe,) v, O(e,)=H(e,) = {< x, max{4, (x),B, (x)},(A, Ap, )x),x€X,e€
MmN} where P'(e,) v, O'(e,) = {< X, max{A:(x),B:(x)},()\: /\,u:)
(x),xeX,eieMﬁN}, If e eMnN Take a, = min{max{A;;T(x),

Be—iT(x)},max{Ae_iT(x)’B;;T(x)}} and f] = max{{min{A;fiT(x),Be—iT(x)}’
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min{A;T<x),BZT(x)}} . Then a; is one of A;T (x),B;T (x).0 A;T (x),
i i i i i
+7T . 7 _ p—T =T .
Bei (x) . Now we consider o = Bei (x) or Bei (x) only as the remaining
cases are similar to this one.
it al=8"(x) then A7 (x)<dT(x).<B T (x)<B T (x) and so
l l l l l

ﬁg :A:T (x) . Thus (AZ UBeT)i(X) = Be_T (x) = OzeT > (/\Z /\,uz )(x) .Hence
i - i ‘ i G

T T T T\~- T TN+
(Ael_ A )(x) e (AT UB]) (x),Al UB]) (v).,

r_ptT =T +T +T
If o —Bei (x)  then Aei (x)SBei (x)< Aei (x), and so
-T =T -T
8. = max{ Ae,- (x), Bei (x)} - Assume that g = Aei (x) then we have
B (x)<a’ (x)<()\g_ anl )(x)S BT (1)< 4T (x). So from this
i i z l i i
we can write Be_T (x)< Ae_T (x)< (/\Z /\,ug )(x) < B:T (x)< A:T (x).
i i l l i i

-T - T T T T :
or Bei (x)< Aei (x)= ()\ei A'uei J(x) < B;; (x)< A;; (x).For this case
-T -T T T +T +T (N - .
Bei (x)< Aei (x) <()\ei A Mei )(x) < Bei (x)< Aei (x)it is contradiction

to the fact that and are T-ENSCS.

=T =T _ T T < +T < +T
For the case Bei (x)< Aei (x)= ()\el_ /\,uei )(X) < Bei (x)< Aei (x)
we have ()\g /\ug )(x) ¢ ((AZI UB) (x),A, UB) (x)) because
i i

(AT UB)™(x)= Ae_T (x)= ()\g /\,ug )(x) .Againassumethat g7 = g T (x)
i i i “ ¢;
T -T T T +T +T
then we have Aei (x)< Bei (x)< (/\ei Ale, )(X) < Bei (x)< Aei (x)-
From this we can write A1 (x)< BT (x) <(/\T /\,uT )(x) <aT (x)
T -T -T T T T T
SBZ (x)or A (x)SBe. (x)=()\ei /\,uei )(x)<BZ (x)< A; (x).

i i i i i
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. -T -T T T +T +T :
For this case Ae,' (x) < Bei (x) < ()\ei /\,uei )(x) <Bei (x) < Aei (x) it
is contradiction to the fact that and are T-ENSCS. And if we take the case
-T =T | \T T +T +T
A (x)SB (x)— oA ()4 (x)SB (x), we get have
6 i % ¢ i i
(A§ N )(x) e ((AT UB!Y (x),A7 UB!)Y (x)) because (A7 UBT)™ (x)=
i i

-T T T
Bej (x) =()\ei /\uei )(x) .

If e, €e M—Nor e, e N-M ,then result is trivial.
Hence (P, M) U, (Q,N) is T-ENSCS in X.

Similarly we have the following theorems

Theorem:3.8
Let (P,M) = { P(e) ={<x, A, (x),\, ()>:x€ X} ¢ € M} and

Q. N)={Q(e;)={<x,B, (x), pt, (x)>:x€ X} e, € N }bel- ENSCSsin
X such that l l

max{{min{A;;I (x),Be_il (x)},min{Ae_i[ (x),B;l_l (x)}},

(Aé vl )(x)e
P min{ max {4} (x), 87 (x)}, max {4 (x), B} (x)}}
1 1 1 l

(3.8)

foralle, e M and for alle, e Nand forallx € X.Then (P, M), (Q,N)
is also an I- ENSCS.

Theorem 3.9
Let (P,M) = { P(e) ={<x, A, (), \, ()>:x€ X} ¢ € M} and

(QN)={Qe)={<x,B, (X), i, X)>:x€ X} ¢ € Njbe F- ENSCSs
in X such that ' l
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max{{mm{A+F (.87 (o) minga F (), 87F (x)}},

)(x)e e, e, e e,
min{ max{A" " (x). 877 (o)) max (4] " (x). 8" (x)}}

i i i i

3.9)

foralle, e Mandforalle, e Nand forall x € X.Then (P, M)uU, (Q,N)
is also F- ENSCS.

F F
()\ei vuei

Corollary: 3.10
Let PM)={P(e,)={<x, A, X),\, X)>:x€ X} e, € M} and
(Q.N)= {Q(e) = {<x,B, (x), 4, ()>:x€ X} ¢ € N} be NSCSs in X.

Then R-union (P, M) U, (Q,N) is also an ENSCS in X when the conditions
(3.7), (3.8)and (3.9) are valid.

Example: 3.11

Let (P,I)and (Q,J) be T-external neutrosophic soft cubic sets (T- ENSCS)
in X where

(P,I)=P(e,) ={<x, ([0.3,0.5],[0.2,0.5],[0.5,0.7]), (0.2,0.3,04) >e, € 1},
(Q,))=Q(e)) = {<x, ([0.7,0.9][0.6,0.8][0.4,0.7]), (0.4,0.7,0.3) >e, € J }
forall x € X

Then (P,l)and (Q,J) are T-ENSCS in X and (P,1) N, (Q,J)=(P,I)
(0,))=PN0(e) ={<x,([0.3,0.5] [0.2,0.5],[0.4,0.7]), (0.4,0.7,0.4)

>e, € INJ }forallx € X.

(P, 1) m; (O,J)is not T-ENSCS since
- +
()\Zl vujz)(x):0.4e(0.3.0.5):[(AeT1 ﬂBeTl ) (x),(AeT1 nBeTl) (x)]

From the above example it is clear that R-intersection of T-ENSCS may not
be an T- ENSCS. We provide a condition for the R-intersection of T-external
(resp. I-external and F-external) neutrosophic soft cubic sets to be T-external
(resp. I-external and F-external) neutrosophic soft cubic set.

Theorem 3.12
Let (P,M)={P(e,)={<x, A, (xX),\,(x)>:x€e€ X} e, € M }and
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Irudayam, EN in X such that

P(e,) if ee M—N
H(e,) = O(e)) if ee N-M ; (3.12)
Ple) ny O(e))  if ee MAN
foralle, e Mand foralle, eNandforallx € X.Then (P, M) M, (Q,N) is also
an T- ENSCS.
Proof:

Consider (P, M) N, (Q,N)=(H,C) where InJ = C and

P(e,) if ee M—N
He) = 10(@) if ee N-M
Ple)n, Oe)  if eeMAN

where H(e,)=P(e,)n, QO(e,) is defined as

Ple)n, Qle))= H(e,«)={< x, min{4, (x), B, (x)},(A, Vv p, ) x),x€X,

’eieMmN}, where For each eeM NN, Take oz: = min max{A;T
i

(x),Be_iT (x)},max{Ae_iT (x),BZl_T (x)}}and g = max{{min{AZiT (x),Be_iT

v(x)},min{Ae_iT(x),B;'.T(x)}} .Then «;, isoneof Ae_iT (x),Be_iT (x),A;;T (x)

and B+T( ). Now we consider a, —Be_T (x) orBe_T (x) only as the
remainifig cases are similar to this one. i i

_p-T -T +T -T +T
If a Bel (x) then Aei (x)SAei (x),SBei (x)SBei (x) and so

= A+T (x) .Then given inequality we have (AZ, N BZ ) (x)= A;T (x)= ﬁ;
i

< (AeT )(x) Thus we have (A Vi, )(x)e((AT UB) (x),A, UB)
l

(x)).
it of =BT (x) then 477 (x)<BFT (x)< 4*T (x), and
l l l l

SO 5: = max{Ae_T (x),Be_T (x)} . Assume that ﬁ: = Ae_T (x)
i i i
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T -T T T T T
then we have B (x)< 4 (x)<()‘e-\/”el-)(x)<B:. (X)SA:. (x)- So

e.
1 1 1 1 1

from this we can write Be_T (x)< Ae_T (x)< ()\g \/,ug )(x) =B:T
i i i i
()AL (@or BT (x)<a T (x)< (AZ; vil, )(x) <B T (x)<atl (x).

e.
1 1 1 l 1 1

. =T -T T, T +T +T o
= < <
For this case Bei (x)< Aei (x) ()\ei \/,uei )(x) _Bej (x) < Aei (x) it is
contradiction to the fact that and (P,M) are (Q.N) T-ENSCS.

-T -T T T +T +T
= < <
For the case Bei (x)<Aei (x) (/\ei v,uei)(x)_Bei (x)_Aei (x) we
have (AeT vug)(x)e((Agqu)(x),Ag U BT)"(x)) because (A7 UBI)*
1 l

(x)= B;T (x)= (AZ, \/,ug )(x). Again assume that ﬁeT =B;T (x) then we
1 l l 1
have 47 (x)<B~T (x)s()\T vl )(x)SBJ“T (x)< 4T (x). From this we
¢ ¢ i ¢ ¢ ¢
can write A;T (x) SB;T (x)< ()\Z; V,uzi )(x) <BZT (x)< AZT (x) or
i i i i
4T (x)SBe_T (x)<()\g_ vug)(x)zB:T (x)SA:T (x) . For the case
i i 1 1 i i
-T -T T., T +T +T .
a7 (3)=8; (x)<(/\ei wl )(x)<Bei (9= 47 () it
contradiction to the fact that and are T-ENSCS. And if we take the case
A;T (x)SB;T (x)< (/\Z; vug;)(x):BZT (x)SAZT (x), we get have
i i i i
()\Z; vugi J(x)e((Ag UB') (x),AT UB!)"(x)) because (A7 UB!)Y(x)=

e.
1

eeMnNN .
Similarly we have the following theorems.

Bt (x):()\g; V“eTl. )(x). Hence (P, M), (O,N) is T-ENSCS in X for

Theorem 3.12
Let (P.M)= { P(e) ={<x, A, (X1, \, (¥)>:x€ X} ¢ € M} and

(QN)=1{Q(e)={<x,B, (X).4, (x)>:x€ X} ¢ € N}bel-ENSCSsin
X such that ' '
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max{{min{Az] (x),B;] (x)},min{A;I(x),B;[(x)}},
i i i i

()\é vué )(x) €
! ! min{ max{A;] (x),B;] (x)}, max {A;] (x),le (x)}}
i i i i

(3.12)

forall e, e Mand foralle, € Nand forallx € X.Then (P, M) N, (Q,N)
is also an I- ENSCS.

Theorem 3.13
Let (P,M)={P(e,)={<x, A, (x), A\ X)>:xe X} e, € M} and

(QN)={Qe)={<x,B, (X), i, X)>:x€ X} ¢ € N}be F- ENSCSs
in X such that ' l

max{{min{AZF ()8, F (x)y.min{a (), 87 (x)}},
()\5 vug )(x)e ! ! ! !
! ! min{ max{A;;F(x),Be_l_F(x)},max{Ae_l_F(x),B:iF(x)}}

(3.13)

foralle, e Mandforalle, e Nand forall x € X.Then (P, M) ", (Q,N)
is also F- ENSCS.

Corollary:3.14

Let (P,M)={P(e,)={<x, A, (x), A\, (X)>:x€ X} ¢, € M }and
(QN)={Q(e) = {<x,B, (®). 4, (x)>:x€ X} ¢ € N}be NSCSs in X.

Then (P, M) N, (Q,N) is also an ENSCS in X when the conditions (3.11),
(3.12) and (3.13) are valid.

Theorem 3.15
Let (P, M) = { P(e,) ={<Xx, Aei (%), )\ei (x)>:xe X} e, € M} and
Q,N)=1{Q(e,) = {<x, Bei (%), e, (x)>:xe X} e, € N }be T- external

neutrosophic soft cubic sets in X such that min{ max {AZT (x),B_T (x)},max
i

e.
1
T 08T = (4l Yoo
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- max{{min{A;;T (57 (o mint T (0,857 (x)}} (3.15)

then the (P, M) n, (Q,N) is both an T-internal neutrosophic soft cubic set
and an T-external neutrosophic soft cubic set in X.

Proof: Consider (P, M) N, (O,N) = (H,C) where MnNN=C
where H(e;) =P(e;)n, Ole,)is defined as P(e,)n, Oe,)=H(e,)
={<x, min{ Aei. (x),Bei x)},( )\ei Ve, )x)>:xe X} e, € MNN } Where
P"(e) np Q' (e,) ={<x, min{ A:i (x),B:i x)},( )\:i v ,u:i (x)>:x€e X}

e, € MAN } .Foreach ¢, e MNN Takeq, = min{max{A";T(x),B;T
(x)},max{Ae_iT(x),B:iT(x)}} and g, = max{{min{AZiT(x),Be_lT( )}, min

-T -T T T
{Ae_iT(x),B:iT(x)}}.Thena: isoneofAel_ (X)»Bei (x),A(;: (x)aB:l_ (X)

Now we consider o = nd (x), or ad (x), only as the remaining cases are
i e. e.

i i
similar to this one. If OéC,TIZA;T (x) then B_T (x)gB"'T (x)gA_T (x)g
! i i €
A+T (x),and SO ﬂ: =BZT( ) .This implies that A al ()\T v,uZ)
€ i
T -T T T
(x)=0" B‘: (x) . Thus Bei (x)<B}" () —()\ )(x) A

(x)SA:T( ). Which implies that ()\T v, )(x) B+T( )=( mBT) (x).
j i G

Hence ()\eT vue.](x)e((Afi NB'Y (x),(AT NBTY (x)) and (AT NBTY (x
l 1

S(AeT )(x)<(ATmB Y (). 1f o] = AT (x) then B (x)< 4T
i G e e; e;
(x )<B+T( ), and so ()\; vue.)(x)zA:T(x)z(AZIr\B:Y(x). Hence
i S i
T T TN T T+ _ T
()\ei Vﬂei )(x) 2 ((Ae,. NB,) (x),(A, NB,) (x)) and (A} N B;) (x)< (Aei
VMZ_ )(x) < (A:, N BZ )" (x) . Consequently we note that (P, M) N, (Q,N) is
i

both an T-INSCS and an T-ENSCS in X.
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Similarly we have the following theorems

Theorem 3.16
If neutrosophic soft cubic set (P,M) ={ P(e,) ={<x, A_ (X), A\, (X)>:x €
X} e; €M jand (Q, N) = { Q(e;) = {<x, B, (X), 1, (x)>:x€ X} ¢ € N}
in X satisfy the following condition min{ max{AZ[ (x),B;[ (x)},max{A;I

i i i

]t

- max{{min{A;f’ (x).B; 1 (x)y,min () (x),BF] (x)}} (3.16)
l l l

1

then the (P, M) N, (O, N) is both an I-INSCS and an I-ENSCS in X.

Theorem 3.17
If neutrosophic soft cubic set (P,M) ={ P(e,) ={<x, A_ (X), A\, (X) >
xeX} ¢ eM} and (QN)={Q(e,) = {<x, B, (X), 11, (X) > x € X} ¢ €N}

in X satisfy the following condition min{ max{AZF (x),B;F (x)}, max {A;F
, i i i
(x),B;F (x)}} = ()\5 /\Mg)(x)

l l l

= max{{min{AZF ()., F (x)y.min{A) F (), B7F (x)}} (3.17)
1 1 1 1

then the (P, M) N, (Q,N) is both an F-INSCS and an F-ENSCS in X.

Corollary: 3.18

Let (P,M)={P(e,)={<x,A, (x),\, x)>:x€ X} e, € M} and

Q. N)={Q(e;,)={<x,B, x),p, x)>:xe X} e, €« N} be NSCSs
in X. Then (P, M) N, (Q,N) is also an ENSCS and INSCS in X when the
conditions (3.15), (3.16) and (3.17) are valid.

Theorem: 3.19

Let (B, M)= {P(e) ={<x. A, (x. )\ ()>:xe X} ¢ € M} and

112



(Q.N)={Qle) = {<x,B, (x). #, () >:x€ X} ¢ € N}be T- INSCSs in

T T -T -T
X such that ()\ei Auel_)(x)émax{Aei (x),Bei (x)} for all e, € M andfor

all e, eNand for all xe X, then (P, M) U, (Q,N) is an T-ENSCS in X.
Proof:
Let (P,M)={P(¢,) ={<x, A, X),\, (X)>:x€ X} ¢, € M }and

(QN)={Qe)= {<x. B, (x4, (0>:xe X} ¢ & Nare T- INSCSs
in X.
Thus for all ¢, € M, we have A;T (x)< )\Z (x)SA;T (x) andfor all e, eN

B, "(x )<N (x )<B+T( ) . Since (P, M) U, (O, N) is defined as (P, M) U,
(O.N) (P, M)u (O,N)=(H,C)where C=MUN

P(e) Ifee M—N
H(e,) =0(e) Ifee N-M
Ple)v,0e)  IfeeMAN

Where P(e;) v, Q(e;) is defined as
Ple) vy Ole)= {<x.max{ A, (0B, (9}.(A A )0 >:xe X} ¢ e

€ MNN } where P'(¢) v, 0" (¢)={<x,min{ A’ (x),B" ()},(A" Ap')

(x)>:xe X} e, € MNN }. Given condition is AL /\,u,T (0 < max{A_T
e; e, e

i
(X),B;T (x)} for alle, € Mand foralle. € N and forallx € X.
this implies that

()\T T )(x)e (AT A BI) (x).(Al N BD) ()

€ = (max {A;T (x),B;T (x)}, max {A;T (x),B;T (x)}) '
Hence (P, M) U, (Q,N) is T-ENSCS in X.

Similarly we have the following theorems

Theorem: 3.20
Let (P,M)={P(e,)={<x, A, (x),\ (x)>:xe€ X} e, € M} and
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Q,N)={Q(e)=1{<x,B, x),p, x)>:x€ X} ¢ € N}be T- INSCSs
. I 1 -/ -1

in X such that ()\ei /\,uei)(x)Smax{Aei (x),Bei (x)} for all e, € M and
for all e, eNand for all xe X, then (P, M) U, (Q,N) is an I-ENSCS in
X.

Theorem: 3.21
Let (P, M) = { P(e,) ={<Xx, Aei (x), )\ei x)>:xe X} e, € M} and
Q,N)=1{Q(e,) = {<x, Bei (x), He, (x)>:xe X} e, € N}beT-INSCSsin

FF) o< “F (o o F
X such that ()\el_ AueiJ(x)_max{Aei (x),Bei (x)} for all e, € M and

for all e, eNand for all xe X, then (P, M) U, (Q,N) is both an F-ENSCS
in X.

Corollary: 3.22

Let (P,M)={P(e,)={<x, A, (x),\ X)>:x€ X} ¢, € M} and
Q,N)={Q(e;))={<x,B, (x),n, x)>:x€ X} e, € N }beINSCSs then
(P, M) U, (Q,N) is an ENSCS in X when the THEOREMS (3.19), (3.20) and

(3.21) are valid.

Theorem: 3.23

Let (P, M)={P(e,) ={<x, Aei (x), )‘ei x)>:xe X} e, € M} and
(QN)={Q)={<x,B, (X) 4, (X)>:x€ X} ¢ € N}be T- INSCSs

in X such that ()\Z_ v,ug )(x) 2 maX{A:T (X),B:T (x)} for all e, € M and

; ; . .

i i
for all e, eNand for all xe X, then (P, M), (Q,N)is T-ENSCS in X.

Proof:

Let (P,M)={P(e,)={<x, A, x),\, x)>:x€ X} e, € M }and

QN)={Q(e,)={<x,B, (x), t, x)>:x€ X} ¢ € Njare T- INSCSs

in X. l l

Thus for all ¢; € M, we have 47" (x)< A (x)< 4" (x) andfor all e, €

NB;T (x)< ueTi (x)< B;;T (x) . Since (P, M) N, (Q,N) is defined as (P, M) N,
(O,N) (P,M) N, (QO,N)=(H,C)where C=M NN and
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H(e)=P(e) A, Q(e) ifeee MAN, where P(e) A, O(e) is defined
as P(e,) n, O(e,)={<x, min{ ACi (X),BCi x)},( )‘% Vi, (x)>:xe X} e, €
M AN} where P'(e) A, Q" (e)=
{<x, min{ A: (x),B: x)}.( )\z vu:_ YX)>:xe X} e, € MNAN}.

Given condition is (AZ; VMZ; )(x) 2 min{AZT (x)aB;T (x))
for all e, € M and for all e, e Nand for aill X € Xl. this implies that

¢ ((Ag mBg; )_(x),(AZi mBZ; )+(x))

_ (min{Ae_iT (x),Be_iT (x)},max{A;iT (x),B;iT (x)}).

(oo

Hence (P, M) n, (Q,N) is both an T-ENSCS in X.

Theorem 3.24
Let (P, M) = { P(¢,) ={<x, Aei (x), /\ei (x)>:xe X} e, € M} and
(Q,N)=1{Q(e,) = {<x, Bei (x), e, (x)>:xe X} e, € N}jbe I- INSCSs

. I 1 +/ +/
in X such that()\el_ V“el. )(x)z max{Aei (x), Bei (x); for all ¢ € M and
for all e, eNand for all xe X .then (P, M) N, (Q,N) is an [-ENSCS in

X.

Theorem 3.25
Let (P, M)={P(e,) ={<x, Aei x), )\ei x)>:xe X} e, € M} and
(Q,N)=1{Q(e) = {<x, Bei (x), e, (x)>:xe X} e, € N }be F-INSCSs in

X suchthat ()\5 v,ug )(x) > max{A;rF (x),B:F (x)} for all e, € M and for
i i i i

all e, eNand for all xe X .then (P, M) N, (Q,N) is F-ENSCS in X.

Corollary: 3.26
Let (P,M)={P(e,)={<x, A, (X),\, X)>:x€ X} ¢, € M} and
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Q. N)={Q(e;,)={<x,B, (x), p, (x)>:x€ X} e, € N }be INSCSs then
(P, M) N, (Q,N)is both an ENSCS in X when the Theorems (3.23), (3.24)
and (3.25) are valid.
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