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Main objective in this paper is to present the necessary and sufficient conditions for 
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Sylvester system on time scales.
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1. INTROduCTION

The importance of kronecker product Sylvester systems on time scales is 
an interesting area of current research. Which arise in number of areas 
of control engineering problems, dynamical systems, and feedback 

systems are well known. There are many results from differential equations 
that carry over quite naturally and easily to difference equations, while others 
have a completely different structure for their continuous counterparts. The 
study of Sylvester system on time scales sheds new light on the discrepancies 
between continuous and discrete Sylvester systems. It is also prevents one 
from proving a result twice on for continuous and once for discrete systems. 
The general idea, which the main goal of Bhoner and Peterson’s introductory 
text [1] is to prove a result for a first order differential equation when the 
domain of the unknown function is so-called timescale. 

In this section, we shall be concerned with the first order ∆ -differentiable 
kronecker product dynamical system represented by

 ( ( ) )) ( ) )X t Y(t A(t C(t))(X(t Y(t))+(X( (t)

Y( (t))(B(t) D

⊗ = ⊕ ⊗
⊕ ⊕

Δ σ
σ ((t))+F(t) G(t)(U(t) V(t)),   ⊕ ⊕

 

  ( )  Q0 0X t Y t P( ) ( ( )0 0⊗ = ⊗  (1.1)

 ( ( ) ( )) ( ( ) ( ))( ( ) ( ))R t S t K t L t X t Y t⊗ = ⊗ ⊗  (1.2)
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Where A(t), B(t), C(t), D(t), X(t) and Y(t) are square matrices of order 
n on J=[t

0
, t

1
], R(t), S(t), K(t) and L(t) are all matrices of order p×n and 

F(t), G(t) are matrices of order n×m and U(t), V(t) are control matrices of 
order n×m Here we assume that the matrices A(t), B(t), C(t), D(t) are  
rd-continuous on closed interval J. Many others {[2], [6], [7]} obtained the 
controllability, observability criteria for continuous systems . 

This paper is well organized as follows: In Section2 we present the general 
solution of (1.1) in terms of two fundamental matrix solutions of the systems

 ( ( ) ( )) ( ( ) ( ))( ( ) ( ))X t Y t A t C t X t Y t⊗ = ⊕ ⊗Δ  and 

    ( ( ) ( )) ( ( ) ( )) ( ( ( ) ( ( ))*X t Y t B t D t X t Y t⊗ = ⊕ ⊗Δ σ σ  

(*denotes the transpose of a matrix) on time scales and some basic results on 
kronecker products and timescales are also presented in this section. In Section3 
we establish the necessary and sufficient conditions for complete controllability 
and complete observability under certain smoothness conditions.

2. KRONeCKeR PROduCT SylVeSTeR SySTeMS

In this section we present some basic definitions, notations and results which 
are useful for later discussion.

definition 2.1: [3] If P, Q n n∈ ×C  are two square matrices of order ‘n’ then 
their Kronecker product(or direct product or tensor product) is denoted by  
P Q n n2 2

⊗ ∈ ×C  is defined to be partition matrix

 P Q

p Q p Q p Q

p Q p Q p Q

p Q p Q p Q

n

n

n n nn

⊗ =
















11 12 1

21 22 2

1 2





   










 

We shall make use of vector valued function denoted by Vec P of a matrix 
P = ∈ ×{ }p Cij

n n  defined by

 ˆ

.

.

.

.P VecP

P

P

P

p

p

n

j

j

j

= =





























=

1

2

1

2





where  

 

P




pnj





























≤ ≤1 j n  

it is clear that VecP is of order n2.
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The Kronecker product has the following properties[3]

1.  (P Q) P Q (P denotes the  transpose of P)* * * *⊗ = ⊗

2.  (P Q) P Q-1 -1 -1⊗ = ⊗

3.  The mixed product rule ((P Q)((M N) PM QN))⊗ ⊗ = ⊗( .This rule holds 
good, provided the dimension of the matrices are such that the various 
expressions exist.

4. If P(t) and Q(t) are matrices, then (P Q) P Q ( d/dt)’ ’ ’ ’⊗ = ⊗ =
5.  Vec(PYQ) (Q* P)Vec Y= ⊗

6. If P and Q are matrices both of order n×n then

(i) Vec(PX) (I P)VecXn= ⊗  (ii) Vec(XP) (P* I )VecXn= ⊗

Now we introduce some basic definitions and results on time scales T[1][5] 
needed in our subsequent discussion.

A Timescale T is a closed subset of R; and examples of time scales include 
N; Z; R, Fuzzy sets etc. The set Q = ∈ ≤ ≤{t R Q t/ , }0 1  are not time scales. 
Time scales need not necessarily be connected. In order to overcome this 
deficiency, we introduce the notion of jump operators. Forward (backward) 
jump operator σ(t)of t for t < sup T (respectively ρ(t) at t for t >inf T) is given 
by s(t) = inf{s ∈ T : s > t}, (ρ(t) = sup{s ∈ T : s < t}), for all t ∈ T. The 
graininess function μ : T → [0,∞) is defined by μ (t) = σ (t) − t. Throughout we 
assume that T has a topology that it inherits from the standard topology on the 
real number R. The jump operators σ and ρ allow the classification of points 
in a time scale in the way: If σ(t) > t, then the point t is called right scattered 
; while if ρ(t) < t, then t is termed left scattered. If t < sup T and σ(t) = t, then 
the point ‘ t’ is called right dense: while if t > inf T and ρ(t) = t, then we say ‘t’ 
is left-dense. We say that f : T → R is rd-continuous provided f is continuous 
at each right-dense point of T and has a finite left-sided limit at each left-dense 
point of T and will be denoted by Crd. 

A function f : T → T is said to be differentiable at t T T t T tk∈ = { \ ( ( ) max( ),max )}ρ 

t T T t T tk∈ = { \ ( ( ) max( ),max )}ρ  if lim (( ( ) ( ))

( )( )σ

σ
σt s

f t f s

t s→

−
−

 where s∈T-{ σ(t)} exist and 

is said to be differentiable on T provided it is differentiable for each t ∈ Tk. A 

function F : T → T, with FΔ (t) = f(t) for all t ∈ Tk is said to be integrable, if 

f F t F s
s

t

( ) ( ) ( )τ τΔ∫ = −
 
where F is anti derivative of f and for all s, t ∈T. Let 

f: T → T, and if T=R and a, b ∈ T, then fΔ (t) = f’(t) and f t dt f t t
a

b

a

b

( ) ( ) .∫ ∫= Δ  

If T = Z, then fΔ (t) = Δf(t) = f(t + 1) - f(t) and
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f(t) t

f(k)    if    a b

if    a b

f(k)    if    a b
a

b k a

b

Δ =

<

=

<

∫

∑
=

−1

0

kk b

a

=

−

∑











1

 

If f is Δ-differentiable, then f is continuous. Also if t is right scattered and f is 
continuous at t then

 f t
f t f t

t
Δ ( )

( ( )) ( )

( )
=

−σ
µ

 

In this section, we present the general solution of the Sylvester system 
on time scale (1.1) in terms of the fundamental matrix solution of 
( ( ) ( )) ( ( ) ( ))( ( ) ( ))X t Y t A t C t X t Y t⊗ = ⊕ ⊗Δ and

 ( ( ) ( )) ( ( ) ( )) ( ( ( ) ( ( ))*X t Y t B t D t X t Y t⊗ = ⊕ ⊗Δ σ σ  

Theorem 2.1: If (Y (t) Z (t)) and (Y (t) Z (t))1 1 2
*

2
*⊗ ⊗  are fundamental matrix 

solutions of

 ( ( ) ( )) ( ( ) ( ))( ( ) ( ))X t Y t A t C t X t Y t⊗ = ⊕ ⊗Δ and  

( ( ) ( )) ( ( ) ( )) ( ( ( ) ( ( ))*X t Y t B t D t X t Y t⊗ = ⊕ ⊗Δ σ σ  respectively, then any solution 
of the homogeneous kronecker product Sylvesters system

 ( ( ) ( )) ( ( ) ( ))( ( ) ( )) ( ( ( ) ( ( ))( ( )X t Y t A t C t X t Y t X t Y t B t D⊗ = ⊕ ⊗ + ⊗ ⊕Δ σ σ (( ))t  

is of the form (X(t) Y(t)) (Y (t) Z (t)) ( ) (Y (t) Z (t))1 1 2 2
*

2
*⊗ = ⊗ ⊗ ⊗ζ ζ1 , where 

 2ζ ζ1,  are constant square matrices of order n and Y
1
(t), Z

1
(t), Y

2
(t), and Z

2
(t) 

are fundamental matrix solutions of

 X t A t X t Y t C t Y t X t B t X t

Y t

Δ Δ Δ

Δ

( ) ( ( )( ( ), ( ) ( ( ) ( ), ( ) ( ( )( ( ( )),

(

*= = = σ

)) ( ( )( ( ( ))*= D t Y tσ     
 

respectively.

Theorem2.2: Any solution of (1.1) is of the form 

  (X(t) Y(t)) (Y (t) Z (t))    ( )    (Y (t) Z (t))1 1 2 2
*

2
*⊗ = ⊗ ⊗ ⊗ +ζ ζ1 ((X(t) Y(t))⊗  

where (X(t) Y(t)⊗  is a particular solution of(1.1).
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Theorem2.3: A particular solution )of (1.1) is given by

 (X(t) Y(t))⊗ = ⊗ ⊗ ⊗∫ −( ( ) ( )) (( ( ( )) ( ( ))) ( ( )Y t Z t Y s Z s I F s
t

t

1 1 1 1
1

0

σ σ ))

( ( ) ( ))( ( ) ( ))* *









× ⊗ ⊗ 
 ⊗−U s I s Y s Z s s2 1

1Δ (Y (t) Z (t))2
*

2
*

 

Theorem 2.4: Any solution  (X(t) Y(t)) ⊗  of the initial value problem (1.1) 
satisfying  ( )0X t Y t P Q( ) (0 0 0⊗ = ⊗  is given by

 (X(t) Y(t)⊗ = ⊗ +

× ⊗∫

φ ψ φ

φ σ

( , ) ( , ) ( , )

( ( , ( ))(

*t t P Q t t t t

t s I
t

t

0 0 0 0 0

0

0

FF s U s I s s t s t t( ))(( ( ) ( )) ( , ) ( , )* *⊗















×ψ ψ0 0Δ

 

(2.2)

where φ σ σ σ( , ( )) ( ( ) ( ))( ( ( )) ( ( )))t s Y t Z t Y s Z s= ⊗ ⊗ −
1 1 1 1

1  (2.3)

and ψ* * * * *( , ) ( (( )) (( ))) ( (( )) (( ))s t Y s Z s Y t Z t= ⊗ ⊗−
2 1

1
2 1  (2.4)

3. CONTROllABIlITy ANd OBSeRVABIlITy Of 
Δ-dIffeReNTIAl SySTeMS

In this section, we prove necessary and sufficient conditions for controllability 
and observability of the system (1.1) and (1.2).

definition 3.1. The Δ-differential systems S1 given by (1.1) and (1.2) is said to 

be completely controllable if for t0, any initial state      ( (t ))0 0X Y t P Q) ( ( )⊗ = ⊗0 0  

and any given final state  ( fP Qf⊗ ) there exists a finite time t1 > t0 and a control 

( ( ) ( )),U t V t t t t⊗ ≤ ≤0 1 such that      ( (t ) Y(t1 1 fX P Qf⊗ = ⊗)) ( ) .

Theorem 3.1. The time scale dynamical system S1 is completely controllable 
on the closed interval J = [t0, t1] if and only if the n2 × n2 symmetric controllability 
matrix

  M t t t s F G s F G s t s s
t

t

( , ) ( , ( ))( )( )( ) ( ) ( , ( )) ]* *
0 1 0 0

0

1

= ⊗ ⊗∫ φ σ φ σ Δ   (3.1)

where φ σ( , ( ))t s  is defined in (2.3), is nonsingular. In this case the control 
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( ( ) ( )) ( ) ( ) ( , ( )) ( , )

{( ) ( ,

* *U t V t F G t t s M t t

P Q t t

⊗ = − ⊗

⊗ −

−φ σ

φ
0

1
0 1

0 0 0 11)( )}P Qf f⊗  (3.2)

defined on t t t0 1≤ ≤ , transfers  ( (t ))0 0X Y t P Q) ( ( )⊗ = ⊗0 0  to      ( (t ) Y(t1 1 fX P Qf⊗ = ⊗)) ( )
     ( (t ) Y(t1 1 fX P Qf⊗ = ⊗)) ( ).

Proof. Suppose that M(t
0
, t

1
) is non singular, then the control defined by (3.2) 

exists. Now substituting (3.2) in (2.2) with t = t
1
, we have

 ( (t ) Y(t1 1X t t P Q
P Q t t P Q s

t

f f

⊗ = ⊗ −
⊗ − ⊗{ }

)) ( , )
( ) ( , )( )

(
φ

φ

φ
1 0 0 0

0 0 0 1 Δ

00

1 0 0

0

1 , ( ))( )( )( )*( ) *

( , ) ( ,

σ φ

φ φ

s F G s F G s

t t t

t

t ⊗ ⊗

















=

∫

tt

P Qf

1)

)= ⊗ ( f

 

hence the dynamical system S1 is completely controllable.
Next suppose that the dynamical system S1 is completely controllable on 

J, then we have to show that M (t
0
, t

1
) is nonsingular. Then there exists a non 

zero n2 ×1 vector α such that

 

α α α φ σ φ σ α* * * *( , ) ( , ( ))( )( )( ) ( ) ( , ( ))M t t t s F G s F G s t s s
t

0 1 0 0= ⊗ ⊗ Δ   
00

1

0

1

0

1

0 0

2
0

t

t

t

t

t

s t s t s

s

∫

∫

∫

=

= ≥

θ σ θ σ

θ

* ( ( ), ) ( ( ), )Δ

Δ
 (3.3)

where θ φ σ α= ⊗( ) ( ) ( , ( ))* *F G s t s0 . From (3.3) M(t
0
, t

1
) is positive semi 

definite. 
Suppose that there exists some β≠0 such that β* M(t

0
, t

1
)β = 0 then from 

(3.3) with θ η= when α = β, implies

 
                                                    η

2
0Δs =         

t

t

0

1

∫  

using the properties of norms, we have

 η σ( ( ), ) ,s t t t t0 0 10= ≤ ≤  (3.4)

since S
1
 is completely controllable, so there exists a control ( ( ) ( ))U t V t⊗  making

      ( (t ) Y(t if ( (t ) Y(t1 1 0 0X X⊗ = ⊗ =)) ))0 β . Hence from (2.2) we have
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 β φ σ= − ⊗ ⊗∫ ( , ( ))( )( )(( ( ) ( )) ]t s F G s U s V s s
t

t

0

0

1

Δ   

Consider

 

β β β φ σ β
2

0

0

1

= = − ⊗ ⊗

= −

∫* * * *(( ( ) ( )) ( ) ( ) ( , ( ))

(( ( )

U s V s F G s t s s

U s

t

t

Δ  

⊗⊗ =∫ V s s t s
t

t

( )) ( ( ), )* η σ 0

0

1

Δ 0  

hence β = 0, which is a contradiction to our assumption. Thus M (t
0
, t

1
) is 

positive definite and is therefore non singular. 
We now turn our attention to the concept of observability on a timescale 

dynamical system.

definition 3.2. The timescale dynamical system (1.1) is completely observable 
on J = [t

0
; t

1
] if for any time t

0
 and any initial state  ( )  Q0 0X t Y t P( ) ( ( )0 0⊗ = ⊗  

there exists a finite time t
1
 > t

0
 such that the knowledge of ( ( ) ( ))U t V t⊗  and 

( ( ) ( ))R t S t⊗  for t t t0 1≤ ≤  suffices to determine ( )P0  Q0⊗  uniquely.
Now we present a necessary and sufficient condition for the system (1.1) 

to be completely observable.

Theorem 3.2. The system S1 is completely observable on J if and only if the 
n2 ×n2 symmetric observability matrix

 L t t s t K L s K L s s t s
t

t

( , ) ( , )( ) ( )( )( ) ( , ) ]* *
0 1 0 0

0

1

= ⊗ ⊗∫ φ φ Δ   

is non singular.

Proof. Suppose that L(t
0
, t

1
) is non singular. It is simpler to consider 

the case of zero input, and it does not entail any loss of generality. 
Since the concept is not altered in the presence of a known input signal. 
Implies ( ( ) ( )) [ ]( ( ) ( ))R t S t K L X t Y t⊗ = ⊗ ⊗  since from ( ( ) ( )) ( , )( ) ( , )*X t Y t t t P t t⊗ = ⊗φ ψ0 0 0 Q0 

( ( ) ( )) ( , )( ) ( , )*X t Y t t t P t t⊗ = ⊗φ ψ0 0 0 Q0  we have

 ( ( ) ( )) [ ] ( , )( ) ( , )*R t S t K L t t P t t⊗ = ⊗ ⊗φ ψ0 0 0 Q0  (3.5)

pre multiplying (3.5) with φ* *( , )( ) ( )t t K L t0 ⊗ , post multiply with ψ* ( , )t t0  and 
integrating from t

0
 to t

1
 we obtain
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 φ* *( , )( ) ( )( ( ) ( )) , )( )s t K L s R s S s s t P
t

t

0 1 0

0

1

⊗ ⊗ = ⊗∫ Δ L(t  Q0 0
 

since L(t0, t1) is non singular, ( )P0  Q0⊗  can be determined uniquely. Hence 
the dynamical system S1 is completely observable.

Conversely suppose that the dynamical system S1 is completely observable. 
Then we prove that L(t0, t1) is non singular. Since L(t0, t1) is symmetric, we can 
construct the quadratic form

 

α α α φ φ α

η

* * * *( , ) ( , )( ) ( )( )( ) ( , )

(

L t t s t F G s F G s t s s

s

t

t

0 1 0 0

0

1

= ⊗ ⊗

=

∫ Δ

,, )t s
t

t

0

2
0

0

1

Δ ≥∫                                          (3.6)

where α is an arbitrary column n2-vector and η φ α( , ) ( )( ) ( , )s t K L s t s0 0= ⊗ . 
From (3.6) L(t0, t1) is positive semi definite. Suppose that there exists some 
β≠0 such that β* L (t0, t1)β = 0 then from (3.6) with η=θ when α=β, implies

 
= = ⇒ = ≤ ≤

⇒ ⊗ =

∫  (s,t ) 0,t s t .0 0 1θ θ

ϕ β

( , )

( )( ) ( , )

s t s

K L s t s

t

t

0

2

0

0

0
0

1

Δ

,, t s t0 1≤ ≤
 

From (3.5), this implies that when ( )P0  Q0⊗  = β, the out put is identically 
zero throughout the interval, so that ( )P0  Q0⊗  can not be determined in this 
case from knowledge of ( ( ) ( ))R t S t⊗ .

This contradicts the supposition that S1 is completely observable.
Hence L(t

0
, t

1
) positive definite, therefore non-singular. The proof is 

complete.
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