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1. INTRODUCTION

Let x
1
, x

2, …
, x

n 
denote n real numbers such that a ≤ x

i
 ≤ b, i = 1,2,…,n. The 

rthorder moment µr
/  of these numbers is defined as 

 µr i
r

i

n

n
x/ .=

=
∑1

1

 (1.1)

The power mean of order r namely M
r
 is defined as 

 M
r
 = µr

r/( )
1

 for r ≠ 0  (1.2)

and

 M
r
 = lim /

r r
r

→
( )

0

1
µ  for r = 0. (1.3)

It may be noted that M 
-1
, M

0
 and M

1
 respectively define harmonic mean, 

geometric mean and Arithmetic mean. It is well known that the power mean 
M

r 
is an increasing function of r.
For 0 < a ≤ x

i
 ≤ b, i = 1, 2,..., n, we have, [1],

 µ µr s

r
s/ / ,≥( )  (1.4)

where r is a positive real number and s is any real number such that r > s. If r 
is negative real number with r > s, the reverse inequality holds. For s = 0, the 
inequality (1.4) gives
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 µr o

r
M/ ≥( )  (1.5) 

See also [2]. Some bounds for the difference and ratio of moments have also 
been investigated in literature; see [3-6].

Our main results give the refinements of the inequalities (1.4) and (1.5) 
when the minimum and maximum values of x

1
 namely, a and b, and the value 

of n is prescribed, (Theorem 2.1 and 2.2, below). The bounds for the difference 
and ratio of moments are obtained (Theorem 2.3-2.6, below). We also discuss 
the cases when the inequalities reduce to equalities. As the special cases, we 
get various bounds connecting lower order moments and the standard means of 
the n real numbers, (Inequalities 3.1 - 3.33, below), also see [7-9].

2. MAIN RESULTS

Theorem 2.1. For 0 < a ≤ x
i
 ≤ b, i = 1, 2,...,n, we have 

 µ µr

r r
r s

s

s

s s
r
sa b

n
n

n
a b

n
/ / ,≥

+
+

-







 -

+











-

2
 (2.1)

where n ≥ 3, r is a positive real number and is any non-zero real number such 
that r > s For s < r < 0 the reverse inequality holds. The inequality (2.1) 
becomes equality when

x a x x x
n a b

n
x bn

s
s s

n

s

1 2 3 1 2

1

= = = = =
′ - -

-











 =-, .

µ
and 

The inequality (2.1) provides a refinement of the inequality (1.4).

Proof. The rth order moment of n real numbers x
i
, with x

1 
= a and x

n
 = b can 

be written as 

 µr

r r r r
na b

n
n

n
x x

n
/ ...

.=
+

+
-








+ +
-













-2
2

2 1  (2.2)

Apply (1.4) to n - 2 real numbers x
2
, x

3
,..., x

n-1
, we find that

 x x
n

x x
n

r r
n

s s
n

r
s

2 1 2 1

2 2
+ +

-
≥

+ +
-













- -... ...
,  (2.3)

where r is a positive real number and s is any non zero real number such that 
r > s.

Combine (2.2) and (2.3), we get 

 µr

r r s s
n

r
sa b

n
n

n
x x

n
/ ...

.≥
+

+
-








+ +
-













-2
2

2 1  (2.4)

Also,
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 ′ = + + +



µs

s s s

n
a x b1

2  ,  (2.5)

Therefore

 x x x n a bs s
n
s

s
s s

2 3 1+ + + = ′ - -- µ  (2.6)

Substituting the value from (2.6) in (2.4), we immediately get (2.1).
For s < r < 0, inequality (2.3) reverses its order [2]. It follows therefore 

that inequality (2.1) will also reverse its order for s < r < 0.

Theorem 2.2. For 0 1 2< ≤ ≤ =a x b i ni , , , , ,  we have 

 

µr

r r
o
n

r
na b

n
n

n
M
ab

/ ,≥
+

+
- 









-2 2

 (2.7)

where n ≥ 3 and r is a non-zero real number.
The inequality (2.7) becomes equality when 

 
x a x x x

M
ab

x bn
o
n

n

n

1 2 2 1

1
2

= = = = =










 =-

-

, . and 
 

The inequality (2.1) provides a refinement of the inequality (1.5).

Proof. Apply (1.5) to n - 2 real numbers x x xn2 3 1, , , , - , we find that

 x x x
n

x x x
r r

n
r

n n
n
n

r

2 3 1
2

1
2

3

1
2

1

1
2

2
+ + +

-
≥













- - -
-
-

...
. ... .  (2.8)

Combine (2.2) and (2.8), we get 

 µr

r r
n n

n
n

r
a b

n
n

n
x x x/ . .... .≥

+
+

- 











- -
-
-2

2

1
2

3

1
2

1

1
2  (2.9)

Also,

 M
0
 = a x b n⋅ ⋅ ⋅( )2

1

... ,  (2.10)

therefore

 x x x
M
abn

n

2 3 1
0

 - = .  (2.11)

Substituting the value from (2.11) in (2.9) we immediately get (2.7).

Theorem 2.3. For 0 < a ≤ x
i
 ≤ b, i = 1,2,…,n, we have 

 . ./ /µ µr s

r
s

r r s s
r
s

n
a b a b

-( ) ≥
+

-
+



























2
2 2

 (2.12) 



Sharma, S. R. 
Sharma, R.

38

Mathematical Journal of Interdisciplinary Sciences, Volume 1, Number 1, July 2012

where r is a positive real number and s is a nonzero real number such that r > 
s. For s < r < 0, the reverse inequality holds.

For n = 2 inequality (2.13) becomes equality. For n ≥ 3, inequality (2.13) 
is sharp; equality holds when

 x
1
 = a, x

2
 = x

3
 = …= x

n-1
 = 

a bs s
1
s+







2

 and x
n
 = b. 

Proof. It follows from the inequality (2.1) that 

 µ µ µr s
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Consider a function
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.  (2.13)

The function f( )′µs  is continuous in the interval [as, bs] and its derivative
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s . (2.14)

vanishes at

 µs
/ =

+a bs s

2
 (2.15)

The value of the second order derivative
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 (2.16)

at ′ =
+

µs

s sa b

2
 is

 d f

d

r r s

s n

a b

s

s s
r s

s2

2 2

2

2

2 2µ /

( )
=

-
-

+









-

  (2.17)

It follows from (2.17) that

 
d f

d s
/

2

2µ
 > 0 for r > 0 
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and

 
d f

d s
/

2

2µ
 < 0 for r < 0. 

Therefore, for r > 0, the function f ′( )µs  achieves its minimum when the value 
of ′µs  is given by (2.15). Hence

. f
n

a b a b
s

r r s s
r

s

′( )≥
+









 -

+









µ
2

2 2
. 

This proves (2.12).
Likewise, for r < 0, the function f ′( )µs  achieves its maximum when the 

value of ′µs  is given by (2.15) and we conclude that 

 
µ µr s

r

s

r r s s
r

s

n

a b a b/ / .-( ) ≤
+

-
+



























2

2 2

 

Theorem 2.4. For 0 < a ≤ x
i
 ≤ b, i = 1, 2,…, n, we have

 µr
r

r r r

M
n

a b
ab/ - ≥

+
-( )











0

2

2
 (2.18)

where r is a non zero real number. 
For n = 2, the inequality (2.19) becomes equality. For n ≥ 3, inequality 

(2.19) is sharp, equality holds when

x
1
 = a, x

2
 = x

3
 = … = x

n-1
 = ab  and x

n
 = b .

Proof. It follows from the inequality (2.7) that 
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r

r r n
r

n
rM

a b

n
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n
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ab
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+
+
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-
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0
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2
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Consider a function

 g(M
0
) = a b

n

n

n

M
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M

r r n
r

n
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+
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-
-2 0

2

0
. (2.19)

The derivative

 dg
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rM

M
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r

r

n

0
0

1 0

2

2

1=








 -



















-
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vanishes at 

 M ab0 =  (2.21) 

The value of the second derivative

 d g
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at M ab0 =  is
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0
2
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2
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-
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( ) .
 

Clearly,

 

d g

dM

2

0
2

 

> 0 for M ab0 =  .  

Therefore, for r ≠ 0, the function g(M
0
) attains its minimum at M ab0 =  and 

we have
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n
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r r r
′( )≥

+
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µ

2

2
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This proves (2.18).

Theorem 2.5. For 0 < a ≤ x
i
 ≤ b for i = 1,2,…,n, we have 
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where r is a positive real number and s is any non-zero real number such that 
r > s.

For s < r < 0, the reverse inequality holds. 
For n = 2, the inequality (2.23) becomes equality. For n ≥ 3, this inequality 

is sharp; equality

holds when x
1
 = a, x

2
 = x

3 
= …= x

n-1
= 

a b

a b

r r

s s

r-s+
+











1

 and x
n
 = b.
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Proof. It follows from inequality (2.1) that 

 µ
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 ( )

1

µ /
, (2.24)

where r is a positive real number and s is a non zero real number such that r > 
s. We now find the minimum value of the right side expression in (2.24) as ′µs  
varies over the interval [as,bs].

Consider a function

 h
a b

n

n

n

a b

ns

r r
r s

s

s

s s
r

s

′( )=
+

+
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 ′ -
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 ′( )
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.  (2.25) 

The function h( ′µs ) is continuous in the interval [as, bs] and its derivative

 dh

d

r a b

sn

n a b
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s s

s

r s

s
s

s s

µ µ
µ

/ /

/( )
=
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-
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s s
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 (2.26)

vanishes at

 ′ =
+

+
- +

+











-

µs

s s r r

s s

s
r sa b

n
n

n
a b
a b

2
. (2.27) 

From (2.26), if r is a positive real number and s is any non zero real 

numbersuch that r > s then the sign of 
dh

d s′µ
 changes from negative to positive 

while ′µs
 passes through the value given by (2.27). The function h( ′µs ) 

achieves its minimum at the value of ′µs  given by (2.27). We therefore have,

 h a b
a b n

a b n a b
a bs

r r

s s
s s

r r

s s

s
r s

′( ) ≥
+
+

+ + -( ) +
+















-

µ
1 2

































-s r
s

. (2.28)

Combining (2.24), (2.25) and (2.28), the inequality (2.24) follows immediately.

For s < r < 0, it follows from (2.26) that the sign of dh
d s′µ

 changes from 

positive to negative while ′µs  passes through the value given by (2.27). In this 

case function f( ′µs ) attains its maximum at the value of ′µs  given by (2.27). 
We therefore have,
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On the other hand we conclude from theorem 2.1 that
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Combining (2.25), (2.26) and (2.27), we find that for s < r < 0,
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Theorem 2.6 For 0 < a ≤ x
i
 ≤ b for i = 1,2,…,n, we have 
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where r is a non zero real number.
For n = 2, the inequality (2.31) becomes equality. For n ≥ 3, the inequality 

(2.31) is sharp; equality holds when

 x
1
 = a, x

2
 = x

3
= …= x

n-1
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a br r
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2

 and x
n
 = b. 

Proof. It follows from inequality (2.7) that 
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where r is a non zero real number. We now find the minimum value of the right 
hand side expression in (2.33).

Consider a function
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The derivative 
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vanishes at

 M ab a bn
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n
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( ) .  (2.35)

From (2.34), if r is a non zero real number then the sign of dF
dM 0

 changes 

fromnegative to positive while M
o
 passes through the value given by (2.35). 

The function f(M
o
) attains its minimum at the value of M

o
 given by (2.35). We 

therefore have

 F M a b
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.  (2.36)

Combining (2.32), (2.33) and (2.36), inequality (2.31) follows immediately.

3. SOME SPECIAL CASES

From the application point of view, it is of interest to know the bounds for 
the first four moments and the bounds for standard power means (namely, 
Arithmetic mean, (µ1

/ = x ), Geometric mean (G) and Harmonic mean (H)). 
These bounds are also of fundamental interest in the theory of inequalities. By 
assigning particular values to r and s, in the generalized inequalities obtained 
in this paper, we can find inequalities connecting various power means and 
moments. The following inequalities can be deduced easily from the generalized 
inequalities given in Theorems 2.1 and 2.2: 
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The following lower bounds for the difference of moments and means are 
deduced from the generalized inequalities given in Theorems 2.3 and 2.4:
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The following lower bounds for the ratio of moments and means are deduced 
from the generalized inequalities given in Theorems 2.5 and 2.6:
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, (3.30)

 G
H

a b
ab

n
≥

+









2

2

, (3.31)

 µ2
2

2 2
2

2

/

G
a b

ab

n
≥

+











 (3.32)

and 

 µ2
2 3

2 2 2

2 2

1
3

3

1 2
/ ( )( )

H n
a b a b

a b
n≥

+ +









+ -
















. (3.33)

ACKNOwLEDgEMENT

The second author acknowledges the support of the UGC-SAP.

REFERENCES

[1] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, New York, Cambridge University Press, 
Cambridge, U.K. (1934).

[2] R. Sharma, R,G, Shandil, S. Devi and M. Dutta, Some Inequalities between Moments of  
probability distribution, J. Inequal. Pure and Appl. Math., 5 (2): Art. 86, (2004).

[3] B.C. Rennie, On a Class of Inequalities, J. Austral. Math. Soc., 3: 442–448, (1963).
[4] S. Ram, S. Devi, and R. Sharma, Some inequalities for the ratio and difference of moments, 

International Journal of Theoretical and Applied Sciences, 1(1): 103–110, (2009).
 http://dx.doi.org/10.1017/S1446788700039057
[5] R. Sharma, A. Kaura, M. Gupta and S. Ram, Some bounds on sample parameters with refinements 

of Samuelson and Brunk inequalities. Journal of Mathematical Inequalities, 3:99–106, (2009).
 http://dx.doi.org/10.7153/jmi-03-09
[6] R. Sharma, Some more inequalities for arithmetic mean, harmonic mean and variance, Journal 

of Mathematical Inequalities, 2: 109–114, (2008). http://dx.doi.org/10.7153/jmi-02-11
[7] E.N. Laguerre, Surune mathode pour obtenir par approximation les raciness d’ une Equation 

algebrique qul a tautes ses raciness [in French], Nouvelles Annales de Mathematiques (Paris), 
2e Serie 19: 161–171 and 193–202, (1980) [JFM12:71].

[8] A. Lupas, Problem 246, Mathematicki vesnik (Belgrade), 8 (23): 333, (1971).
[9] S.T. Jensen and G.P.H. Styan, Some comments and a bibliography on the Laguerre Samuelson 

inequalities with extensions and applications to statistics and matrix theory, Analytic and 
Geometric inequalities and their applications (Hari M. Srivastava and Themistocles M. Rassias, 
eds), Springer-Verlag, (1999).

SitaRam Sharma is Assistant Professor Department of Applied Sciences, Chitkara 
University Himachal Pradesh.

Rajesh Sharma is Associate Professor, Department of Mathematics Himachal Pradesh.


