Simultaneous Testing For the Goodness of Fit to Two or More Samples

Narinder Kumar
Gobind P. Mehta
Department of Statistics, Panjab University, Chandigarh
Email: nkumar@pu.ac.in

Abstract

In this paper we have considered the problem to test for the simultaneous goodness of fit of an absolutely continuous distribution function to many samples. The proposed test is seen to have many desirable properties.

Keywords: Shift function; distribution free procedure, nonparametric hypothesis.

1. INTRODUCTION

Tlesting for the goodness of fit of a probability distribution is a very well-known problem. Among others, the tests of Kolmogorov and that of Cramer von-Mises, for testing the goodness of fit of a probability distribution to single sample, are available for such a problem. In this paper, we consider the simultaneous testing for the goodness of fit of an absolutely continuous probability to $k(k \geq 2)$ samples. Let us denote by F_{1}, \ldots, F_{k}, the k absolutely continuous distribution functions and assume that a sample of size n is available from each of these distributions. Let F_{0} be a known absolutely continuous distribution function. The problem is to test the null hypothesis $H_{0}: \mathrm{F}_{1}(x)=\ldots=\mathrm{F}_{\mathrm{k}}(x)=\mathrm{F}_{0}(x)$ for all x against the alternative $H_{A}: \mathrm{F}_{\mathrm{i}}(x) \geq \mathrm{F}_{0}(x)$ for all x and all i and strict inequality for some x and some $i \varepsilon\{1,2, \ldots, k\}$. We shall call $\mathrm{F}_{\mathrm{i}}(x)$ to be better than $\mathrm{F}_{0}(x)$ if $\mathrm{F}_{\mathrm{i}}(x) \geq \mathrm{F}_{0}(x)$ for all x and strict inequality for some x.

Kiefer (1959) considered the problem of testing $H_{0}: \mathrm{F}_{1}(x)=\ldots=$ $\mathrm{F}_{\mathrm{k}}(x)=\mathrm{F}_{0}(x)$ for all x, but against all possible alternatives, that is, against the alternative $\mathrm{F}_{\mathrm{i}}(x) \neq \mathrm{F}_{0}(x)$ for some x and some $i \varepsilon\{1,2, \ldots, k\}$. Although the alternative taken in this paper is a part of the alternative of Kiefer (1959), yet the alternative H_{A} is nonparametric in nature. The alternative H_{A} may be the appropriate alternative in a number of real life situations. For example, let us consider the random variable X that denotes the duration of certain illness. Suppose that a practitioner is using for a long time some popular drug to treat that illness. Let F_{0} be the distribution of the random variable X when using that popular drug. So F_{0} may very well be assumed to be known. If k new drugs for that particular illness come in the market, then the practitioner would like to know if some among these new drugs is better than the one already

Mathematical Journal of Interdisciplinary Sciences Vol. 1, No. 1, July 2012 pp. 17-22

CIIMARA UNIVERSITY

Kumar, N. being used. This will at least help him to decide whether to shift to some new
drug or to stick to the old treatment. Here obviously the practitioner is interested in the alternative H_{A} and not in merely rejecting H_{0} for all possible alternatives. For some other references one may refer to Barlow et al (1972), Miller (1981), Hochberg and Tamhane (1987), Shaked and Shanthikumar (1994) among others.

In Section 2 we formulate the problem and propose the test for testing the null Hypothesis H_{0} against the alternative hypothesis H_{A}. The properties of the proposed test are studied in Section 3. It is seen that the proposed test has many desirable properties.

2. FORMULATION OF THE PROBLEM AND THE PROPOSED TEST

In this section we shall first define, what may be called a shift function. Let F and G be two arbitrary absolutely continuous distribution functions such that, $F(x) \geq G(x)$, for all x.

For $r \varepsilon[0,1]$,define

$$
\Delta(r)=\Delta_{F, G}(r)=F G^{-1}(r)-r .
$$

The function $\Delta($.$) measures the `distance` between two distribution functions$ F and G . Such a measure of distance between two absolutely continuous distribution functions has been considered by Doksum (1974) in the context of inference problems for nonlinear models in the two sample case. It can easily be seen that:
(i) $\Delta($.$) is continuous, non-negative and real valued;$
(ii) $\Delta_{F, G}(r) \geq \Delta_{F, H}(r)$ for all r if and only if $H(x) \geq G(x)$ for all x;
(iii) $\Delta_{F, G}(r) \geq \Delta_{H, G}(r)$ for all r if and only if $F(x) \geq H(x)$ for all x;
(iv) $\Delta_{F, G}(r)=0$ for all r if and only if $F(x)=G(x)$ for all x.

Let $\Delta^{*}($.$) be such a specified shift function and let F^{*}(x)$ be the distribution function such that

$$
\begin{equation*}
\Delta_{F^{*}, F_{0}}(r)=\Delta^{*}(r) \text { for all } r \tag{2.1}
\end{equation*}
$$

This in turn gives $F^{*}(x)=F_{0}(x)+\Delta^{*}\left(F_{0}(x)\right) \geq F_{0}(x)$ for all x.
Let $X_{i 1}, \ldots, X_{i n}$ be a random sample from distribution, $F_{i}, i=1, \ldots, k$, and let the k random samples be independently drawn. Based on the ith random sample, let us define a statistics T_{i} which depends upon the observations $X_{i 1}, \ldots, X_{i n}$ only through the known distribution function F_{0}, that is, $T_{i}=t\left(F_{0}\left(X_{i 1}\right), \ldots, F_{0}\left(X_{i n}\right)\right)$
for $i=1, \ldots, k$. Let us make the following assumptions about the distribution of the statistics T_{i} :

Assumption 2.1: The statistics T_{i} are absolutely continuous random variables.
Assumption 2.2: If $F_{i}(x) \geq H_{i}(x)$ for all x, then $G_{i}(x) \leq K_{i}(x)$ for all x, where $G_{i}(x)$ denotes the distribution of the statistics T_{i} when based on a random sample from $F_{i}(x)$, and $K_{i}(x)$ denotes the distribution of the statistics T_{i} based on a random sample from $H_{i}(x)$.

For testing the null hypothes is H_{0} against the alternative hypothesis H_{A} we propose the statistics $T=\max _{1 \leq i \leq k} T_{i}$ and reject H_{0} in favour of H_{A} for large values of T. The statistics T is being proposed as a test statistics for testing H_{0} against H_{A} in view of the following argument. Suppose for some $\mathrm{j} \varepsilon\{1,2, \ldots, \mathrm{k}\}, F_{j}(x) \geq F_{0}(x)$ for all x and strict inequality for some x (this amounts to considering the situation when in fact the alternative H_{A} is true). In view of assumption 2.2, it would follow that the statistics T_{j} when based on a sample from F_{j} would tend to be larger than if T_{j} were based on a random sample from F_{0}. Thus if the null hypothesis H_{0} is false and the alternative H_{A} is in fact true, then the statistics T will tend to take larger values. Hence, we reject H_{0} in favour of H_{A} for sufficiently large values of T.

3. PROPERTIES OF THE TEST T

We shall first consider the distribution of the test statistics T and then study the properties of the test based on T. Let $\Delta^{*}($.$) be specified shift function$ and let $F^{*}($.$) be the distribution function as defined in (2.1). Let us consider$ the distribution of the statistics T_{i} when based on a sample from F^{*} (.) (that is, when for $F_{i}(x)=F^{*}(x)$ for all x), and also when based on a sample from F_{0} (x) (that is, when $F_{i}(x)=F_{0}(x)$ for all x). Obviously, when $F_{i}(x)=F_{0}(x)$ for all x, the distribution of $F_{0}\left(X_{i \alpha}\right)$ for each $\alpha \varepsilon\{1,2, \ldots, n\}$ is uniform and hence the distribution of the statistics Ti would not depend upon known $F_{0}(x)$. Also, if $F_{i}(x)=F^{*}(x)$ for all x, then from the definition (2.1) of $F^{*}($.$) , for each$ $\alpha \varepsilon\{1,2, \ldots, n\}$,

$$
p\left\{F_{0}\left(X_{i \alpha}\right) \leq r\right\}=F^{*} F_{0}^{-1}(r)=r+\Delta^{*}(r) \quad \text { for all } r \text {. }
$$

So in this case also the distribution of $F_{0}\left(X_{i \alpha}\right)$ for each α, and hence that of T_{i}, does not depend upon known $F_{0}(x)$ and depends only upon the shift function Δ^{*} (.). This in turn implies that if each F_{i} is either F^{*} or F_{0}, the distribution of the statistics T would not depend upon the knowledge of the distribution F_{0}. Hence the test based on the statistics T is a distribution free procedure.

Kumar, N. Mehta, G. P.

Let us denote by G_{i} the distribution function of T_{i} when based on a random sample from F_{i}, by G^{*} if T_{i} is based on a random sample from F^{*}, where F^{*} is defined in (2.1), and by G_{0} if T_{i} were based on a random sample from F_{0}. As already seen the distributions of G_{0} and G^{*} do not depend upon the known distribution F_{0}. Let us denote by c, the upper quantile $\alpha-$ of the distribution of T when for all x. So

$$
\begin{align*}
1-\alpha & =p\left\{T \leq c \mid F_{i}(x)=\text { for all } x, \text { all } i\right\} \\
& =p\left\{T_{i} \leq c, i=1, \ldots, k \mid F_{i}(x)=F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& =\prod_{i=1}^{k} p\left\{T_{i} \leq c \mid F_{i}(x)=F_{0}(x) \text { for all } x\right\} \tag{3.1}\\
& =\left[G_{0}(x)\right]^{k}
\end{align*}
$$

The above equalities follow because under the hypothesis H_{0} the statistics $T_{i} s$ are independent and identically distributed random variables each having distribution G_{0}.

Relation (3.1) implies that $G_{0}(c)=(1-\alpha)^{1 / k}$, that is, c is the quantile of order $(1-\alpha)^{1 / k}$ of the distribution G_{0}. Thus c does not depend upon the known distribution F_{0} and can be determined from the distribution G_{0}.

Monotonicity of power function: Consider the probability of rejection region for the hypothesis H_{0} when in fact either H_{0} is true or H_{A} is true, that is,

$$
p\left\{T \geq c \mid F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i\right\}
$$

We shall now show that this probability behaves monotonically in $F_{i}^{\prime} s$ in the sense that this decreases (increases) if for some F_{α} is replaced by H_{α}, where $F_{0}(x) \leq H_{\alpha}(x) \leq F_{\alpha}(x)$ for all $x\left(F_{0}(x) \leq F_{\alpha}(x) \leq H_{\alpha}(x)\right.$ for all $\left.x\right)$. we in fact have

$$
\begin{align*}
& p\left\{T \geq c \mid F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& =1-p\left\{T \leq c \mid F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& =1-p\left\{T_{i} \leq c \text { for all } i \mid F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& =1-\prod_{i=1}^{k} p_{F_{i}}\left\{T_{i} \leq c\right\}, \text { where } F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i \\
& =1-\prod_{i=1}^{k} \mathrm{G}_{i}(c), \text { where } \mathrm{G}_{i}(x) \leq G_{0}(x) \text { for all } x, \text { all } i \\
& \geq(\leq) 1-\left[\prod_{i=1, i \neq \alpha}^{k} G_{i}(c)\right] k_{\alpha}(c), \tag{3.2}
\end{align*}
$$

where K_{α} (c) is the distribution function of T_{α} based on a random sample from H_{α} and $F_{0}(x) \leq H_{\alpha}(x) \leq(x)$ for all $x\left(F_{0}(x) \leq F_{\alpha}(x) \leq H_{\alpha}(x)\right.$ for all $\left.x\right)$. The inequality (3.2) follows in view of assumption 2.2. Thus the test of the null hypothesis H_{0} against thealternative hypothesis H_{A} based on the statistics T is monotone. Monotonicity in turn implies that the test is unbiased. We in fact have from (3.2), by replacing each F_{i} by F_{0} on the right hand side and by choice of c,

$$
\begin{aligned}
\text { Power } & =p\left\{T \geq c \mid F_{i}(x) \geq F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& \geq p\left\{T \geq c \mid F_{i}(x)=F_{0}(x) \text { for all } x, \text { all } i\right\} \\
& =\alpha
\end{aligned}
$$

Example 3.1: Let us make the statistics T_{i}^{\prime} s to be

$$
T_{i}=-2 \sum_{\alpha=1}^{n} \log _{e} F_{0}\left(X_{i \alpha}\right), i=1,2 \ldots, k
$$

and the known shift function $\Delta^{*}($.$) to be$

$$
\Delta^{*}(r)=r^{1-\delta^{*}}-r \text { for all } r, 0 \leq r \leq 1,
$$

where $\delta^{*}\left(0 \leq \delta^{*} \leq 1\right)$ is a pre-specified number. This choice of $\Delta^{*}($.$) gives$ $F^{*}(x)=\left[F_{0}(x)\right]^{1-\delta^{*}}$ for all x So $=0$ if and only if $F^{*}(x)=F_{0}(x)$ for all x and larger the value of δ^{*} more is the distance between F^{*} and F_{0}. In this case it can be seen that

$$
G_{0}(x)=\int_{0}^{x} \frac{2^{-n} e^{-y / 2} y^{n-1}}{(n-1)!} d y
$$

a gamma distribution with scale parameter $1 / 2$ and shape parameter n (or chisquare distribution with $2 n$ degrees of freedom), and

$$
G^{*}(x)=\int_{0}^{x} \frac{2^{-n}\left(1-\delta^{*}\right)^{n} e^{-y\left(1-\delta^{*}\right) / 2} y^{n-1}}{(n-1)!} d y,
$$

a gamma distribution with scale parameter $\left(1-\delta^{*}\right) / 2$ and shape parameter n.
So the critical point in this case can be obtained from gamma/chi-square tables. In case $F_{i}(x)=F^{*}(x)$ for all x and for t values of i, and $F_{i}(x)=F_{0}(x)$ for all x and for remaining ($k-t$) values of i, then we can write from (3.2),

$$
\text { Power }=1-\left[G^{*}(c)\right]^{t}\left[G_{0}(c)\right]^{k-t}
$$

Simultaneous Testing For the Goodness of Fit to Two or More Samples

Kumar, N. Mehta, G. P.
which is increasing in t, in view of assumption 2.2. We see that for $t=0$ (that is, under H_{0}), Power $=\alpha$ and for $t=k$ (that is, when all distributions are better than F_{0} and are equidistance δ^{*} from $\left.F_{0}\right)$, Power $=1-\left[G^{*}(c)\right]^{k}$. Thus in this case the power can be obtained by making use of gamma tables. It may be seen that as $\delta^{*} \rightarrow 1, G^{*}(c) \rightarrow 0$, which in turn implies that Power $\rightarrow 1\left(\right.$ as $\left.\delta^{*} \rightarrow 1\right)$.

Remark 3.1: One may consider the test T using $T_{i}=D_{i n}^{+}=\sup \left(F_{i}(x)-\right.$ $\left.F_{0}(x)\right), i=1,2 \ldots, k$, the Kolmogorov's statistics. But the distribution of $T_{i}^{\prime} s$ even when all $F_{i}^{\prime} s$ are better than F_{0} and are equidistant δ^{*} from F_{0}, cannot be written in a closed form. So, even for this situation, one cannot obtain an explicit expression for the power of test T.

REFERENCES

[1] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972): Statistical Inference under Order Restrictions. John Wiley \& Sons, New York.
[2] Doksum, K. (1974): Empirical probability plots and statistical inference for nonlinear models in the two sample case. Annals of Statistics, 2, 267-277. http://dx.doi.org/10.1214/aos/1176342662
[3] Hochberg, Y. and Tamhane, A. C. (1987): Multiple Comparison Procedures. John Wiley \& Sons, NewYork.
[4] Kiefer, J. (1959): K-sample analogue of the Kolmogorov-Smirnov and Cramer von-Mises tests. Annals of Mathematical Statistics, 30, 420-427. http://dx.doi.org/10.1214/aoms/1177706261
[5] Miller, R. G., Jr. (1981): Simultaneous Statistical Inference, $2^{\text {nd }}$ ed., Springer-Verlag, NewYork.
[6] Shaked, M. and Shanthikumar, J.G. (1994): Stochastic Orders and Their Applications, Academic Press, San Diego.

Narinder Kumar, Professor in Department of Statistics, Panjab University, Chandigarh.

Gobind P. Mehta, Professor in Department of Statistics, Panjab University, Chandigarh.

