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Abstract

In this paper we have proposed a measure of past entropy based on order statistics. We 
have studied this measure for some specific life- time distributions. A Characterization 
result for the proposed measure has also been discussed and also and an upper bound 
for this measure has been derived.
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1 InTROduCTIOn

Shannon entropy (1948) plays a central role in the field of information 
theory. For a non-negative continuous random variable X with distribution 
function F (.) and p.d.f f (.), it is given by

 H X f x f x dx E f X( ) ( ) log ( ) (log ( )).= − = −
∞

∫0
 (1)

Here H(X) measures the average uncertainty associated with the random 
variable X. If X is the lifetime of a system and if the system has survived 
up to time t, then to measure the uncertainty about the remaining lifetime of 
such a system the measure (1) is not appropriate. Ebrahimi (1996) proposed 
a measure which measures the uncertainty about the remaining lifetime of a 
system if it is working at time t, given by

 H X t
f x

F t

f x

F t
dx t

t
( ; )

( )

( )
log

( )

( )
, .= −









 >

∞

∫ 0  (2)

The measure (2) is called the measure of residual entropy. Obviously, when  

t = 0, it reduces to (1). Further by writing λF t
f t

F t
( )

( )

( )
,=  (2) can be rewritten as

 H F t
F t

f x x dxF
t

( ; )
( )

( ) log ( ) ,= −
∞

∫1
1

λ  (3)
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where λ
F
 (t) is the hazard rate function and F x F x( ) ( )= −1  is the survival 

function of X.
In many realistic situations uncertainty is not necessarily related to the 

future but can also refer to the past. For example, a system which is monitored 
only at certain preassigned inspection times is found to be down at time t, then 
the uncertainty of the system depends on the past, that is at which instant in 
(0, t) it has failed. Di Crescenzo and Longobardi (2002) studied this case and 
introduced a measure of past entropy over (0, t) given by

 H X t
f x

F t

f x

F t
dx

t

( ; )
( )

( )
log

( )

( )
,= −









∫0

 (4)

which tends to (1) when t → ∞. They have also discussed properties of 
past entropy and its relationship with the residual entropy. By writing 

τF t
f t

F t
( )

( )

( )
= , (4) can be rewritten as

 H F t
F t

f x x dxF

t

( ; )
( )

( ) log ( ) ,= − ∫1
1

0
τ  (5)

where τF t
f t

F t
( )

( )

( )
=  is the reversed hazard rate of X.

Suppose that X
1
, X

2
, · · · , X

n
 are independent and identically distributed 

observations from cdf F (x) and pdf f (x). The order statistics of the sample is defined 
by the arrangement of X

1
, X

2
, · · · , X

n
 from the smallest to the largest, denoted as 

X
1 : n

 ≤ X
2 : n

 ≤ · · · ≤ X
n : n

. Order statistics have been used in a wide range of 
problems like detection of outliers, characterizations of probability distributions, 
quality control and strength of materials; for more details see Arnold et al.(1992), 
David and Nagaraja (2003). Several authors have studied the information theoretic 
properties of an ordered data. Wong and Chen (1990) showed that the difference 
between the average entropy of order statistics and the entropy of parent distribution 
is a constant. Park (1995) obtained some recurrence relations for the entropy of 
order statistics. Ebrahimi et al. (2004) explored some properties of the Shannon 
entropy of order statistics and showed that the Kullback-Leibler (1959) relative 
information measure involving order statistics is distribution free. Arghami and 
Abbasnejad (2011) studied Renyi entropy (1961) based on order statistics.

In this communication we extend the measure of past entropy (4) to order 
statistics. In Section 2, we propose the measure of past entropy for order 
statistics. Section 3 focuses on a characterization result that the measure of 
past entropy of the ith order statistics under some conditions determines the 
distribution function uniquely and also we study an upper bound for this 
measure. Some concluding remarks are mentioned in Section 4.
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2 PAST EnTROP fOR ORdER STATISTICS

Shannon’s measure of uncertainty associated with the ith order statistics X
i : n

 
is given by

  H X f x f x dxi n i n i n( ) ( ) log ( ) ,: : := −
∞

∫0
 (6)

where

 f x
B i n i

F x F x f xi n
i n

: ( )
( , )

( ( )) ( ( )) ( )=
− +

−− −1

1
11 1

 (7)

is p.d.f of ith order statistics, for i = 1, 2, · · · , n, and 

 B a b x x dx a ba b( , ) ( ) , , ,= − > >− −∫ 1 1

0

1

1 0 0  (8)

is beta function with parameters a and b, refer to Ebrahimi et al. (2004). Note 
that for n = 1, (6) reduces to (1).

Using probability integral transformation U = F (X ), where U follows 
standard uniform distribution, (6) can be expressed as 

 H X H W E f F Wi n n i gi i( ) ( ) [log( ( ( )))],: = − −1  (9)

where

 
H W B i n i i i n n i

n i
n i( ) log ( , ) ( )[ ( ) ( )] ( )

[ ( ) (

= − + − − − + − −

× − + −

1 1 1

1

ψ ψ

ψ ψ nn +1)],
 (10)

denotes entropy of ith order statistics from standard uniform distribution whose 
p.d.f is given by

  g w
B i n i

w w wi
i n( )

( , )
( ) ,=

− +
− < <− −1

1
1 0 11 1  (11)

and ψ( )
log ( )

z
d s

dz
=

Γ
 is the digamma function, refer to Ebrahimi et al. (2004).

Analogous to (4), we propose the past entropy of ith order statistics as 

 H X t
f x

F t

f x

F t
di n

i n

i n

t
i n

i n

( ; )
( )

( )
log

( )

( ):
:

:

:

:

= −








∫0

xx.  (12)

As in case of (5), (12) can be rewritten as 

 H X t
F t

f x x dxi n
i n

i n F

t

i n
( ; )

( )
log ,:

:
: :

= − ( ) ( )∫1
1

0
τ  (13)

where τFi n
x

:
( )  is the reversed hazard rate of ith order statistics given by 
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 τF
i n

i n
i n

x
f x

F x:
( )

( )

( )
.:

:

=  (14)

Note that, if we take t → ∞ in (12) and use the probability integral transformation 
U=F(X) then it reduces to (9).

In reliability engineering (n −k + 1)-out-of-n systems are very important 
kind of structures. A (n − k + 1)-out-of-n system functions iff atleast (n − k + 1) 
components out of n components function. If X

1
, X

2
, · · · , X

n
 denote the independent 

lifetimes of the components of such system, then the lifetime of the system is 
equal to the order statistic X

k:n
. The special case of k = 1 and n, that is for sample 

minima and maxima correspond to series and parallel systems respectively.
Next we discuss two specific distributions exponential and Pareto for the 

case i = n, the case i = 1 follows on similar lines but a little bit complicated. For 
i = n, from (7) we have f

n:n
(x) = nF n−1(x) f (x) and F

n:n
(x) = F n(x). Using these 

values and putting U = F (X ) in (12), after some simplifications, we get 

 H X t n F t
F t

nu nu f F u dun n n
n

t
n( ; ) log ( )

( )
log( ( ( ))): = − − − −∫

1 1

0

1 1  (15)

Example 2.1 Let X be an exponentially distributed random variable with pdf 
f(x) = θe−θx, θ > 0, x ≥ 0. Then F (x) = 1 − e−θx and f (F −1 (u)) = θ (1 − u). Using 
(15) and letting t → ∞, we get

  lim ( ; ) log ( ),:t n nH X t n n
→∞

= − + +1 θ γ ψ  

where γ = −ψ(1) ≈ 0.5772, which is same as derived by Ebrahimi et al.
(2004) using Shannon entropy.

Example 2.2 Let X be a random variable having Pareto distribution with pdf  

f x
x

x x( ) , , .= ≥ ≥
+

+

θβ
β

θ

θ

1

1
0  It is easy to see that f F u u( ( )) ( ) .− += −1 11

θ
β

θ
θ  

Hence using (15) we have

  
H X t

n
F t n

n

F t
un n n

( ; ) log log log
( )

( ): = − + ( )− −








−

+
1

1 1θ
β

θ
θ

(( )
( )

log( ) .n
F t

u du− −∫ 1

0
1

As we take limit t →∞ we obtain

 lim ( ; ) log log ( ):t n nH X t
n

n n
n→∞

= − − −








−

+
− − −


1

1 1 1θ
β

θ
θ

γ ψ





.

as the entropy of the nth order statistics for Pareto distribution.
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3 CHARACTERIzATIOn RESulT

Several authors have studied characterization results for information theoretic 
measures using order statistics. Baratpour et.al. (2007,2008) have studied 
characterization results for Shannon and Ranyi (1961) entropy based on order 
statistics using Stone-Weistraas Theorm. Continuing with similar kind of 
approach, in this section we prove a characterization theorem which ensures 
that under certain condition the proposed measure of past entropy based on 
order statistics characterizes the distribution function uniquely. To prove this 
result, we require the following lemma, see Kamps (1998).

Lemma 3.1 For any increasing sequence of positive integers {n
j
 , j ≥ 1}, the 

sequence of polynomials {xnj} is complete in L(0, 1), if and only if njj

−

=

∞∑ 1

1
 

is infinite.
Here, L(0, 1) is the set of all Lebesgue integrable functions on the interval 

(0, 1).
Next, we state the following characterization theorem.

Theorem 3.1 Let X
1
, X

2
, · · · , X

n
 and Y

1
, Y

2
, · · · , Y

n
 be n i.i.d random 

variables with cdf F (x) and G(y), pdf f (x) and g(y) respectively and 
having finite entropies. Let X

k:n
 and Y

k:n
 denote their corresponding kth 

order statistics. Assume that ∃ a constant t
0
 such that F (t

0
) = G(t

0
). If  

H X t H Y t k nk n k n( ; ) ( ; ), ,: :0 0 1= ≤ ≤  then X is identical in distribution with Y.
Proof: The notations having their usual meanings, the reversed hazard rate 

is

 τF
k n

k n
k n

f x

F x;

:

:

( )

( )
.=  

Using (7), the above expression can be written as

 τ τF n k Fk n
x K F x x

:
( ) ( ( )) ( ),,=  (16)

where K F t
B k n k

F t

F t

n

i n

n k

k

k

, ( ( ))
( , )

( )
( ( ))

( )!
( )!( )!

=
− − +

−

−







1

1 1
1

1 
 −























=∑ F t

F t

i

i

n ( )
( ( ))11



.

It can be seen easily that

 H X t E X X tk n X k n k nk n
( ; ) [log ( ) | ].: ; ::

= − <1 τ  (17)

Using (16) in (17), we get
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 1− = <H X t E X K F X X tk n X k n n k k n k n( ; ) [log( ( ) ( ( )) | ].: : , : :τ  (18)

Using probability integral transformation U = F (X ) in (18), we get

 
1 1− = <

=

−H X t E F U K U U F tk n X k n n k k n k n( ; ) [log( ( ( )) ( )) | ( )]

log

: : , : :τ

τXX n k U

U

F t F u K u h u

H F t
duk n

k n

( ( )) ( ) ( )

( ( ))
:( )

:

:

−

∫
1

0

 

where
 h u

u u

B k n k
uU

k n k

k n:
( )

( )

( , )
, ,=

−
− +

< <
− −1 1

1
0 1  

is the pdf of kth order statistics of standard uniform distribution and HUk n:
 

is the distribution function of kth order statistics of the standard uniform 
distribution.

We are given that H X t H Y tk n k n( ; ) ( ; ): :0 0= . Hence 

 

log ( ( )) ( )
( )

( ( ))

log (

,

( )
:

:

τ

τ

X n k

U

U

F t

X

F u K u
h u

H F t
du

G

k n

k n

−

−

∫

=

1

0
0

0

11

0
0

0

( )) ( )
( )

( ( ))
.,

( )
:

:

u K u
h u

H G t
dun k

U

U

G t
k n

k n

∫
 (19)

Using change of variable u
u

→
µ

 and F (t
0
) = G(t

0
) in (19) we obtain

  log
0

1

1

1
∫

−

−




































τ
µ

τ
µ

X

Y

F
u

G
u




























h

u d
Uk n: µ

uu

µ
= 0.  (20)

It is easy to see that h
u

Uk n: µ











 satisfies the conditions of Lemma 3.1, therefore 

using this lemma we get

  log

τ
µ

τ
µ

X

Y

F
u

G
u

−

−






































1

1
















= 0, (21)

which is possible only when
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τ

µ
τ

µX YF
u

G
u− −





















=
















1 1




∀








, ( , )

u

µ
ε 0 1

 

that is, f F
u

g G
u− −





















=


















1 1

µ µ


∀








, ( , ).

u

µ
ε 0 1

Note  that 
d

dt
F t

f F t
−

−=1
1

1
( )

( ( ))
 . Therefore, F

u
G

u
d

u− −








=









+ ∀











1 1 0 1
µ µ µ

ε, ( , )), 

where d is a constant. Using F (t
0
) = G(t

0
) we get the desired result.

3.1 An upper bound to the past entropy

We prove that, if fi n: ≤1, then

 H X t
H X

F ti n
i n

i n

( ( ))
( )

( )
.:

:

:

≤   

We have

 

H X t
f x

F t

f x

F ti n
i n

i n

t
i n

i n

( ( ))
( )

( )
log

( )

( ):
:

:

:

:

= −








∫0

== − ∫log ( )
( )

( ) log ( ) .:
:

: :F t
F t

f x f x dxi n
i n

i n

t

i n

1
0

 

For t > 0, we have log F
i:n

(t) ≤ 0

 

H X t
F t

f x f x dx

F t
f x

i n
i n

i n

t

i n

i n
i n

( ; )
( )

( ) log ( )

( )
( )

:
:

: :

:
:

≤ −

≤ −

∫
1

1

0

llog ( ) .:
0

∞

∫ f x dxi n

 

Hence

H X t
H X

F ti n
i n

i n

( ( ))
( )

( )
.:

:

:

≤

The equality is obtained when t → ∞.

4 ConClusion
Information measures are applied widely in different areas of physics, 
communication theory and economics. Residual and past measures of 
information have found applications in life testing and reliability theory. 
The proposed mesure of order statistics based on past entropy characterizes 
the underlying distribution uniquely. This can be possibly used further for 
statistical modeling and reliability analysis.
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