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Abstract

The model selection problem is always crucial for any decision making in statistical 
research and management. Among the choice of many competing models, how to 
decide the best is even more crucial for researchers. This small article is prepared as 
a teaching note for deciding an appropriate model for a real life data set. We briefly 
describe some of the existing methods of model selection. The best model from the 
two competing models is decided based on the comparison of limited expected value 
function (LEVF) or loss elimination ratio (LER). A data set is analyzed through 
MINITAB software.

1 INTRODUCTION

It is often believed that only one reasonable model may be constructed 
for a given decision making problem in market research. In empirical 
studies, one may be able to construct alternative models consistent with 

the hypothesis of the objectives (Wilson (1979), Bass (1969) and Carmone and 
Green (1981)). Many criteria may be used to compare quantitative marketing 
models. These criteria include such things as underlying assumptions, data 
requirements, and theoretical implications (Larreche and Montgomery (1977), 
Little (1979), Narasimhan and Sen (1983) and Rust (1981)). 

Many methods for comparing structural forms of quantitative models have 
been proposed in the last three decades. These methods may be classified in 
terms of methodological emphasis as supermodel methods (Atkinson (1969), 
Johnson and Kotz (1977)), cross-validation methods (Mosteller and Tukey 
(1968), Stone (1974)), likelihood methods (Cox (1962), Akaike (1974)), or 
Bayesian methods (Smith (1973), Blattberg and Sen (1975), Rust (1981)). 
The model validation is a procedure of model comparison, estimating the 
competing models and then compiling error statistics on the other (Mosteller 
and Tukey (1968), Stone (1974)). The interrelatedness of the above categories 
of methods is exemplified by the fact that using Bayesian arguments Smith and 
Spiegelhalter (1980) obtained criteria closely related to those of Akaike (1974) 
and Schwarz information criterions. 

This article examines the case in which two or more probability models 
are to be compared and decide how to choose the best among the competing 
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models. In the next section, we present the problem. In section three some 
useful results and model inferences are discussed. 

2 The pRObleM

Consider the following data set (n = 40): 85, 90, 92, 5, 10, 17, 54, 55, 58, 55, 
58, 32, 33, 32, 82, 68, 34, 36, 92, 102, 103, 106, 146, 124, 142, 195, 65, 66, 68, 
54, 55, 58, 143, 151, 158, 195, 114, 114, 116 and 57 (see Bain and Engelhardt, 
1991). Assume that this is not a time series data, then as a preliminary 
investigation, one can prepare a frequency distribution or a histogram or even 
a sample ogive to get an assessment about the shape of the data. The ogive 
and histogram generally provide some indication as to the type of distribution 
that will model the data. For the above data set we prepared a histogram and 
ogive (omitted here) and concluded to be a positive skewed distribution (the 
MINITAB sample statistics for the above data are mean = 83, median = 68, 
mode = 55, sd = 47.58 and skeweness = 0.614). Instead of drawing conclusions 
from descriptive statistics, one can directly check the normality of the data and 
proceed. On our further investigation, we found that the prospective models 
for the above data set are Weibull and Gamma distributions (see Table 2 for 
p-values). In the next section, we present some useful results to decide best 
alternative model through a data set. 

3 SOMe USeFUl ReSUlTS

Suppose X be the decision variable under study and f(x) the corresponding 
probability density function, then the limited expected value (LEV) function 
or the expected loss eliminated is defined as 

 E X d xf x dx d F d
d

[ ; ] ( ) [ ( )], ( )= + −∫ 1 1
0

 (1)

where F(x) is the distribution function of the variable X. Another view of E[X;d] 
is that it is the expected value of Y = min(X, d), that is the mean of a random 
variable censored at d. The other quantity of interest is the loss elimination 
ratio (LER) which is the ratio of the expected loss eliminated to the expected 
value of X. that is LER = E[X;d] /E(X), provided E(X) exists (Klugman et.al. 
2008). Note that E[X;d] always exists. A quantity which needs to be compared 
with E[X;d] is the empirical limited expected value (ELEV) function for a 
sample as
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For accepting any model as providing a reasonable description of the decision 
process, we should verify that E[X;d] and E dn ( ) are essentially in agreement 
for all values of d. It is because as d X d X→∞ →E E[ ; ] ( ), if it exists and 
E d Xn ( )→ . Thus comparing E[X;d] and E

n
(d) is like a method of moments 

approach in a restrictive way. 
In life testing experiments d may be sometimes called the truncation time 

or the censoring time. In this respect another important characteristics of life 
time models is the mean residual life (MRL) at age d > 0 is the conditional 
mean of X-d, given X ≥ d, namely

 e d E X d X d x d
f x

P X d
dx

d

( ) [ | ] ( )
( )

( )
( )= − ≥ = −

≥

∞

∫ 3 (3)

Then E[X;d] and e(d) are related through the equality

 E(X)=E[X e F; ] ( )[ ( )] ( )d d d+ −1 4 (4)

A plot of e(d) can also give some indication as to the type of distribution 
that will model the data. A very important problem associated with model 
selection is fitting of probable model to the data. In order to fit a model 
to a data, we need to estimate the parameters. This can be done using 
various methods like percentile matching, method of moments, minimum 
distance method, minimum chi-square method and maximum likelihood 
method etc. The first two are crude method and may be easy to implement 
but produce inferior estimates. The other three methods are more formal 
procedures with well defined statistical properties. Although they produce 
reliable estimators, they can be complex sometimes. Many often we need to 
employ some numerical procedures to get the estimators. For the particular 
problem discussed above, we use maximum likelihood method to estimate 
the parameters. In Table 1 we provide the MINITAB output of the model 
parameters estimates and Table 2 the corresponding Goodness of fit summary 
for the above data set.

In Table 2, we present the summary of Goodness of fit tests and their 
conclusion. The Table clearly shows a preference for Weibull distribution 
followed by Gamma distribution. It is possible to judge the best based on the 
p-value concept also. A p-value is a measure of how much evidence we have 
against the null hypotheses. It also measures the consistency by calculating 
the probability of observing the results from the sample of data assuming the 
null hypothesis is true. In the above situation, the p-value concept may not 
be sufficient to arrive at a final conclusion as the same models have same 
p-value. 
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Table 1. Ml estimates of Distribution parameters

Distribution location Shape Scale  

Normal* 83.00000 47.58636

Lognormal* 4.20502 0.76126

3-Parameter Lognormal 4.98178 0.30774 - 69.73051

Exponential 83.00000

2-Parameter Exponential 78.05000 4.95000

Weibull 1.80328 93.12422

Smallest Extreme Value 107.70310 50.63953

Gamma 2.49243 33.30081

3-Parameter Gamma 4.7124 22.26230 - 20.99262

Logistic 79.53017 27.02753

Loglogistic 4.28257 0.39303

3-Parameter Loglogistic 4.81433 0.21261 - 47.91801

Table 2. Goodness of Fit Test

Distribution AD p lRT p

Normal 0.633 0.092

Lognormal 1.050 0.008

3-Parameter Lognormal 0.313 * 0.002

Exponential 3.186 < 0.003

2-Parameter Exponential 2.812 < 0.010 0.027

Weibull 0.317 > 0.250

Smallest Extreme Value 1.486 < 0.010

Largest Extreme Value 0.313 > 0.250

Gamma 0.432 > 0.250

3-Parameter Gamma 0.303 * 0.254

Logistic 0.593 0.083

Loglogistic 0.589 0.085

3-Parameter Loglogistic 0.352 * 0.056
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Therefore, to decide between the two we now use a semi parametric 
approach based on the agreement between the empirical and fitted LEV 
function as given in equations (1) and (2) above. These functions are crucial to 
the determination of the effects of coverage modifications.

Figure 1
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Table 3.

empirical estimates.
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For the example discussed above, except Weibull and Gamma we rejected 
the other models because of their poor performance on likelihood measures. 
As Weibull and Gamma are the two competitors (see Figure 1), we computed 
the LEV functions for both distributions to make the final decision. In Table 3, 
we present those empirical estimates. From the table it is seen that for Weibull 
distribution the empirical expectation is closer to the LEV and hence is a better 
model for the data. Also the LER of Weibull is much less than that of the 
Gamma distribution for every d as the estimated E(X) of Weibull and Gamma 
is respectively 352.87 and 82.71. This again supports Weibull being the best 
model for the data set. 

The table also includes the empirical distribution function which may be 
used for manually checking goodness-of-fit test. The above method works 
even if there are more than two competing models. The use of MRL function 
can also give a similar result. Since MRL and LEV functions are related it 
is sufficient to do only LEV function calculations. The other methods like 
minimum distance estimation, Bayes factor approach etc can also be used for 
identifying the best out of many alternatives. Generally these methods are very 
tedious.
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