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abstract In the present paper, a mathematical model describing the thyroid-
pituitary homeostatic mechanism is analyzed for its physiological and clinical 
significance. The influence of different parameters on the stability behavior 
of the system is discussed. We have assumed in the present paper that the rate 
of thyrotropin production is reduced by an amount which is proportional to 
the blood concentration of thyroxine and also the rate of loss of thyrotropin is 
proportional to the existing thyrotropin concentration. The stability behavior 
of the system is analyzed and the possibility of occurrence of periodic 
solutions is looked into. As the pituitary gland can produce no output in 
presence of thyroxine concentration greater than a certain value, we have 
also included a degenerate form of the equation for thyrotropin production 
in the present paper. The solutions of the system of governing equations are 
obtained by applying the Laplace transform. Also, the nature of the solution 
is interpreted graphically using the Maple12 technique for both stable and 
unstable behavior.
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1. inTroDUCTion

The thyroid gets its name from the Greek word for “shield”, due to 
the shape of the related thyroid cartilage. The thyroid gland is one of 
the largest endocrine glands. It is also considered to be an extremely 

important endocrine gland in amphibians. It is situated in the frontal region of 
our neck. 

There are three primary features of the thyroid at the microscopic level:
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1. Follicles: The thyroid is composed of spherical follicles that selectively 
absorb iodine from the blood for production of thyroid hormones, but 
also for storage of iodine in thyroglobulin, in fact iodine is necessary for 
other important iodine-concentrating organs as breast, stomach, salivary 
glands, thymus etc. Twenty-five percent of all the body’s iodide ions are 
in the thyroid gland. Inside the follicles, colloid serves as a reservoir of 
materials for thyroid hormone production and, to a lesser extent, acts as a 
reservoir for the hormones themselves. Colloid is rich in a protein called 
thyroglobulin.

2. Thyroid epithelial cells (or “follicular cells”): The follicles are surrounded 
by a single layer of thyroid epithelial cells, which secrete T

3
 and T

4
. When 

the gland is not secreting T
3
/T

4
 (inactive), the epithelial cells range from 

low columnar to cuboidal cells. When active, the epithelial cells become 
tall columnar cells.

3. Parafollicular cells (or “C cells”): Scattered among follicular cells and 
in spaces between the spherical follicles are another type of thyroid cell, 
parafollicular cells, which secrete calcitonin.

To describe the mechanism in the thyroid gland, we assume that thyrotropin 
activates a thyroid enzyme, which when activated, produces thyroxine. 
Thyroxine production depends on the concentration of the activated enzyme 
and not directly on the level of thyrotropin. Thyrotropin, when it reaches 
the thyroid gland, activates a thyroid enzyme which, in turn, catalyzes the 
shedding of thyroxine from the colloidal follicles of the thyroid gland into 
the blood stream. When the level of thyroxine in the blood exceeds a certain 
value, the anterior pituitary cannot produce any output. As the anterior 
pituitary cannot produce any thyrotropin in this case, the production of 
thyroxine decreases, and in the process, when the level of thyroxine falls, the 
feedback mechanism of the thyroid-pituitary system again starts, which in 
turn,  increases the blood concentration of thyroxine and consequently, the 
symptoms of catatonic schizophrenia reappears with remarkable periodicity. 
The system may be stabilized by administering thyroxine extract externally 
at a constant rate

The thyroid gland releases hormones that regulate the rate of metabolism 
and affect the growth and rate of function of many other systems in the body. 
The principal hormones are Tri-iodothyronine(T

3
) and Thyroxine (T

4
). They 

are synthesized from both iodine and tyrosine. Up to 80% of the T
4
 is converted 

to T
3
 by peripheral organs such as the liver, kidney and spleen. The thyroid also 

produces calcitonin, which plays a role in calcium homeostasis. Hormonal 
output from the thyroid is regulated by Thyroid-Stimulating Hormone (TSH) 
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produced by the anterior pituitary which is regulated by Thyrotropin-Releasing 
Hormone (TRH) produced by the hypothalamus.

Abnormal steady-state thyroxine level in the blood stream can cause 
system malfunction leading to various types of physical and mental disorders. 
Thyroid disorders include-

1. Hyperthyroidism (overactive thyroid gland, excess of Thyroid hormone)
2. Hypothyroidism (underactive thyroid gland)
3. Thyroid nodules (benign thyroid neoplasm, may be thyroid cancers)

All these disorders may give rise to Goiter (enlarged thyroid).
The anterior lobe of pituitary gland produces the hormone thyrotropin 

under the influence of the Thyrotropin Releasing Factor (TRF) secreted by 
the hypothalamus in the brain. Thyrotropin, when it reaches the thyroid gland, 
activates a thyroid enzyme which, in turn, catalyzes the shedding of thyroxine 
from the colloidal follicles of the thyroid gland into the blood stream. Thyroid 
also produces thyroxine, a hormone that contains iodine obtained from the 
diet. The system which regulates the concentration of thyroxine in blood is a 
negative feedback control mechanism. Since engineering studies of negative 
feedback systems show that oscillations often occur in such systems that 
suggest investigating the change in thyroid levels. This was the approach 
initiated and developed by Danziger and Elmergreen (1954, 1956, 1957) who 
set up a system of ordinary differential equations which are assumed to govern, 
among other quantities, the level of thyroxine in the blood. They also studied 
the oscillatory solutions of this system of differential equations.

2. MaTHeMaTiCaL MoDeL 

Quantitative descriptions of endocrine systems in the form of mathematical 
models have been proposed by Danziger and Elmergreen (1957).We have, in 
the present paper, assumed that the rate of thyrotropin production is reduced 
by an amount proportional to the blood concentration of thyroxine and that 
the rate of loss of thyrotropin is proportional to the existing thyrotropin 
concentration, following the homeostatic mechanism as discussed by Danziger 
and Elmergreen (1956). As the pituitary gland can produce no output in presence 
of thyroxine concentration greater than a certain value, we have also included 
a degenerate form of the equation for thyrotropin production. To describe the 
mechanism in the thyroid gland, we have assumed that thyrotropin activates 
a thyroid enzyme, which is when activated, produces thyroxine. Thyroxine 
production, according to this assumption, depends on the concentration of the 
activated enzyme and not directly on the level of thyrotropin. We can describe 
a mathematical realization of all these considerations by the following model: 
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where P, E and θ represent the concentrations of thyrotropin, activated enzyme 
and thyroxine respectively; g, k and b represent loss rate constants per unit 
concentration of thyrotropin, activated enzyme and thyroxine respectively;  
h, m and a are constants expressing the sensitivities of the glands to stimulation 
(activation) or inhibition (deactivation) rate of the hormone or enzyme; c is 
the rate of production or activation of thyrotropin in the absence of thyroid 
inhibition. Since the production rate is not possible, all the constants here are 
assumed to be positive. 

Mathematical model (2.1) describes the steady-state behavior of endocrine 
systems exhibiting periodicities in component concentrations.

For θ≤ c
h

, the system possesses a non-trivial equilibrium point i.e.  

Q
S
 = (PS, ES, θS) where P Es

kbc

D s
mbc

D s
amc

D

amh gkb

D
= = = +, ,   with  θ D = .

It has been proved by Mukhopadhyay and Bhattacharyya (2006) that the 
system is asymptotically stable if 

 k b g g k b b k g bgk mha2 2 2 2( ) ( ) ( )+ + + + + + >  

And the system is unstable if 

 k b g g k b b k g bgk mha2 2 2 2( ) ( ) ( )+ + + + + + <  (2.2)

If a and m are sufficiently large in comparison with the loss of constants, 
then the inequality (2.2) holds. This indicates that high production rate of the 
activated enzyme and of thyroxine may be the causes of unstability of the 
system. Danziger and Elmergreen (1956) showed that the system admits periodic 
solutions with sustained oscillations if the thyroxine level is not less than certain 
value. The oscillation, together with a high production rate of thyroxine, causes 
a system malfunction which is known as periodic catatonic schizophrenia.

3. MaTHeMaTiCaL SoLUTion 

The solution of the system of equations (2.1) has been obtained using the 
Laplace transform technique. 



Solution of a 
Mathematical 

Model Describing 
the Change of 

Hormone Level in 
Thyroid Using the 

Laplace Transform

103

Mathematical Journal of Interdisciplinary Sciences, Volume 2, Number 1, September 2013

We write P   and 1 1 1= = =  ( ), ( ) ( )P EE θ θ
Applying the Laplace transform on the system of linear differential 

equations Erwin Kreyszig, we obtain the subsidiary equations as

 

s P c h

k

s

P        for c
h

sE E  mP E

1 1 1

1 1 1

1

0

0

− = − − ≤

− = −

−

( ) ( )

( )

 θ θ

θ θ

gP

(( )0 1 1  aE b= − θ  (3.1)

3.1 STabLe beHavior

Following the mathematical model described by Mukhopadhyay and 
Bhattacharyya (2006), we will assign the values to the parameters c = 100,  
h = 1, g = 1.29, m = 8, a = 0.6, k = 0.97 and b = 1.39 as for the non-delayed 
system (2.1) with θ≤ c

h  such that equation (2.2) is not satisfied. Also we 
will assign the value to the equilibrium point i.e. the initial condition as  
Q

S
 = (15,158,80)

 

System of linear algebraic equations (3.1) are then solved and the values 
are obtained as
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To obtain the values of P(t), E(t) and θ(t), we will take the inverse Laplace 
transform [6] of each equation in (3.2). Here we require using the result 
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to be the functions of s i.e. F(s) whose f(t) is to be calculated. Simplifying 
(3.3) using the partial fractions, we will get the form 
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  (3.4)

To obtain f(t), we will apply the inverse Laplace transform on both the sides of 
each equations in (3.4), we will get

f t t e e t et t

1
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where δ(t) is the Dirac delta function.

Integrating each equation in (3.5) between the limit 0 and t and also using 
the result that integration of δ(t) from 0 to ∞ is one, we will get
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The solution of the system (2.1) which does not satisfy (2.2) is given by 
equations in (3.6).

Using Maple12, the graphs of P(t), E(t) and θ(t) versus time t has been 
obtained and are  shown as below –

3.2 UnSTabLe beHavior

Again following the mathematical model described by Mukhopadhyay and 
Bhattacharyya (2006), we will assign the values to the parameters as c = 100, h 
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1, g = 1.29, m = 12, a = 1.2, k = 0.97 and b = 1.39, for the non-delayed system 

(2.1) with θ≤ c
h  such that equation (2.2) is satisfied. Also we will assign the 

value to the equilibrium point i.e. the initial condition as 
System of linear algebraic equations (3.1) are then solved and the values 

are obtained as
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To obtain the values of P(t), E(t) and θ(t), we will take the inverse Laplace 
transform Murray R. Spiegel of each equation in (3.7). Here we require using 
the result − 


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to be the functions of s i.e. F(s) whose f (t) is to be found. Simplifying (3.8) 
using the partial fractions, we will get the form
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Now we will apply the inverse Laplace transform on both the sides of each 
equation in (3.9), we will get
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where δ(t) is the Dirac delta function.
Integrating equations in (3.10) between the limit 0 and t and using the 

result that integration of δ(t) from 0 to ∞ is one, we will get
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The solution of the system (2.1) which satisfies (2.2) is given by equations in 
(3.11).

Using Maple12, the graphs of P(t), E(t) and θ(t) vs. time t has been obtained 
and are shown as below –

4. ConCLUSion

It can be observed from figure1 that the concentrations show stable behavior. 
The graphs in figure2 demonstrate the unstability of different components 
of the system leading to oscillatory behavior which symbolizes the periodic 
fluctuations and shows the symptoms of periodic schizophrenia. 

From equations in (2.1), it can also be observed that when the level of 
thyroxine in the blood exceeds c h, the anterior pituitary cannot produce any 

thyrotropin. As a result the production of thyroxine is decreased and when this 

level falls below c h , the feedback mechanism of the thyroid-pituitary system 

starts working, which in turn increase the blood concentration of thyroxine 
and consequently, the symptoms of catatonic schizophrenia may reappear 
with remarkable periodicity. This system may be stabilized by administering 
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thyroxine extract externally at a constant rate which should be greater than 
bc

h i.e the ratio of constant external input of thyroxine to its loss rate should 

cross a certain value for the stability of the system

USe anD SCope 

The thyroid-pituitary feedback system considered in the present paper, may 
help to control the patient’s symptoms and may prevent the situation from 
getting worse than a certain level. The stability analysis with instantaneous 
transportation of different hormones reveals that high production rate of 
activated enzyme and thyroxine may be the cause of unstability in the system.

Figure 1: Graphs exhibit the stable behavior of all the concentrations for the non-
delayed system: (a) P(t) vs. t      (b) E(t) vs. t     (c) θ(t) vs. t.

Figure 2: Graphs exhibit unstable behavior of all the concentrations for the non-
delayed system: ( a ) P(t) vs. t      ( b ) E(t) vs. t     ( c ) θ(t) vs. t.
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The present work can be further extended to the case of discrete or distributed 
delays due to time transportation by different hormones in the bloodstream.
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