
Mathematical Journal of 
Interdisciplinary Sciences 

Vol. 2, No. 1,  
September 2013 

pp. 89–94

©2013 by Chitkara 
University. All Rights 

Reserved.

DOI: 10.15415/mjis.2013.21007

A Note on Monitoring Fuzzy Financial Returns

RezA HAbibi

Department of Statistics, Central Bank of Iran

e-mail: habibi1356@yahoo.com

Abstract This paper presents change point analysis for stock market time 
series where it is assumed the rate of return on securities are approximated as 
LR-fuzzy numbers. We consider the change point detection in the mean and 
variance of returns. The methods are proposed and their theoretical aspects 
are studied. A real data set is also considered. Finally, a conclusion section 
is given.
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1 iNtRoductioN

Monitoring plays an important role in time series analysis. In practice, 
some characteristics (mean, variance or both) of a specified time 
series may change over periods of times. That is, they are fixed 

through a period and differ from one period to the next. This phenomena is 
referred as change point, monitoring, regime shift and surveillance.

Change point analysis has been received considerable attentions for 
financial time series. For example, Hillebrand and Schnabl (2003) studied 
change point detection in volatility of Japanese foreign exchange intervention 
under GARCH modeling. Halunga et al. (2009) detected changes in the order 
of integration of US and UK inflation. An excellent reference in change point 
analysis is Csorgo and Horvath (1997). However, in all of these examples, 
financial time series are regarded as sequence of random variables. In this 
paper, we consider rate of returns of securities as fuzzy numbers.

Two main properties of every financial market are uncertainty and vague. 
Monitoring under these conditions is difficult task. Although, stochastic models 
may consider the uncertainty, however, they do not respect to vague. Therefore 
the fuzzy logic produces a good inferential setting for monitoring stock market 
data. Fuzzy approach is applied for making inference in financial problems by 
Leon et al. (2002), Bermudez et al. (2005).

Hence, following Zulkifli et al. (2009), we suppose that the rate of returns 
are LR-fuzzy numbers A = (a

l
, a

u
, c, d)

LR
 defined by membership function
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Here, [a
l
 , a

u
] is the peak of A and L, R are two even reference functions defined 

on [0, 1] → [0, ∞], strictly increasing and upper semi-continuous on

 supp A r rA( ) { ; ( ) }.= >µ 0  

This paper is organized as follows. Section 2 considers the cusum, rolling and 
cusum of square statistics for change point detection in mean and variance of 
returns. Theoretical justifications are given in section 3. A real data set is given 
in section 4. Conclusions are given in section 5.

2 cHANge iN MeAN ANd vARiANce

In this section, we propose the cusum and rolling methods for change point 
detection in means of returns. Also, we study the shift in variance of return 
series using the cusum of square test statis-tic.

2.1 cusum method

Let R
j
 = (a

lj
 , a

uj
 , c

j
 , d

j
 )

LR
, j = 1, 2, ..., n denote the rate of returns. Following 

Hawkins (1977) and Bermudez et al. (2005), the k-th cusum statistic is given 
by

 s e e k nk i
i

k

= − = −
=
∑( ), , ,...., ,1 2 1

1

 

where

 e a a d c j nj uj lj j j= − + − =
1

2
1 2( ), , ,.... .  

So, we conclude that by plotting s
k
 over number of observations k = 1, 2, ..., n − 

1, if there exists some maximum or minimum in these four plots, we conclude 
that there are some change points.

2.2 Rolling method

The rolling analysis is useful technique to monitor a time series. It is done by 
estimating parameters over a rolling window with fixed length during the given 
sample. Therefore, for monitoring an asset returns in mean, we compute ek

m
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, where ek
m is the mean ej for j = k, ..., k + m − 1, k = 1, 2, ..., n − m + 1. That 

is, we compute means over a rolling window with fixed length m. If there is a 
change in means of returns then these plots capture these instabilities.

2.3 cusum of square method

Inclan and Tiao (1994) used cumulative sum of square for retrospective 
detection of changes of variance. Following their approach, we propose the

 IT=max | |
k

kD  

as test statistic for shift detection in variance of returns, where

 D
v

v

k

nk
i
k

i

i
n

i

= −=

=

∑
∑

1

1

,  

with v a a d c j nj uj lj j j= − + − =
1

2
1 2( ) ( ), , ,....,

3 tHeoReticAl justiFicAtioN

In this section, we propose some justification for selecting e
i
 and v

j
 to use in 

cusum, rolling and cusum of square test statistic. First, note that R
j
 is a non-

fuzzy variable and it is a random variable. Then,

 R j nj j j= + =µ ε , , ,...., .1 2  

To check the constancy of µj , following Hawkins (1977), the k-th cusum 
statistic is given by U R Rk j

k
j= = −∑ 1( ) . The overall cusum test statistic for 

testing the change point among observations Rj is given by

 U U
k n

k=
≤ ≤ −
max | | .

1 1
 

theorem 1. Assuming R
j
 being random (non-fuzzy) variables, with com-mon 

finite variance σ2 <∞ , then U
k
 is close uniformly on k to its expectation given 

by θ µ µk j
k

j= −∑ 1( ) .

Proof. One can see that E Uk k k j
k

j= − = −=∑θ ε ε1 ( ) . According to the 
Donsker and continuous mapping theorem, it is seen that

 n E B t
t

nt
t

dsup sup | ( ) |,
[ ]

0 1 0 1< <
 →

< <
 

where B(·) is standard Brownian bridge on [0, 1]. This shows that 
max ( )1 1

1
2

≤ ≤ −
−=k n k pE O n , and this completes the proof.
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Remark 1. Suppose that there is a change point in mean process µ
j
. That is, 

they are (say) µ1
*  before change point k

0
 and shifts to µ2

*  after time point k
0
. 

Let δ µ µ= −1 2
* * . It is seen that

 θ
δ

δk

k k n k k

k k n k k
=

− ≤

− ≥ +







( / ) ,

( / ) .
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1 1
0 0

0 0

 

Therefore, | |θk  takes its maximum on k
0
 and for constructing the cusum 

statistic, it is enough to compute max ( ) .1 1≤ ≤ −k n kE U

theorem 2. In the fuzzy setting again U
j
 is close e

j
 .

Proof. See Bermudez et al. (2005).

Remark 2. Following Bermudez et al. (2005) and Zulkifli et al. (2009), one 
can show that, in the fuzzy setting, µ

j
 = e

j
. The argument for rolling is the same. 

This justifies proposing the cusum and rolling statistics in above mentioned 
form in a fuzzy setting. Arguments for cusum of square test statistic, in a non-
fuzzy approach, are similar cusum statistic, see Inclan and Tiao (1994). Again, 

following Bermudez et al. (2005), it is seen that the semi-var(R
j
 ) = v

j 
. The 

above Theorem (Theorem 2) and Remarks justifies estimation of θ
k
 by U

k
.

Remark 3. As we learned from a referee, this method may be studied from 
robustness perspective. Because, considering stock returns as fuzzy numbers 
may be let us in safety margins since we may not consider small changes as 
a sharp change points and in practice real change points will be detected, an 
event which is not happened in non-fuzzy setting.

4 ReAl dAtA set

Here, we analyze the TEPIX (Tehran Exchange Price Index). The data set is 
log-daily return of mentioned stock for period 1 Feb 2005 to 20 May 2009. We 
have plotted the series and the usual (when the returns are not considered as 
fuzzy numbers) cusum of the series in Figures 1 and 2, respectively. Both plots 
indicate that there is no change point among observations. Following Zulkifli 
et al. (2009), a

uj
 and a

lj
 are asset j-th return at 60-th and 40-th percentiles, 

respectively. The c
j
 is asset j-th return spread between 40-th and 5-th percentiles. 

Finally, we assume that d
j
 is asset j-th return spread between 95-th and 60-th 

percentiles. We report the mean and standard deviation and range of U
k
 as 

0.005, 0.0028 and 0.01. This shows that there is no change point in the mean 
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of data. Our studies also shows that a GARCH model is fitted to the above 
mentioned returns and also there is no change point in parameters of GARCH 
series.

5 coNclusioNs

In this paper, we proposed two methods for change point detection in mean of 
rate of returns of a specified stock market. We proposed two methods cusum 
procedure and rolling analysis for change point detection. The returns are 
approximated by fuzzy numbers.
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