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abstract A porous medium is an elastic solid permeated by an 
interconnected network of pores filled with a fluid. Both solid and pore 
network are assumed to be continuous so as to form two interpenetrating 
continua. The theory of poroelasticity investigates the time-dependent 
coupling between the deformation of the elastic solid skeleton and fluid 
flow within the skeleton. The solid-to-fluid and fluid-to-solid couplings are 
assumed to occur instantaneously in the quasi-static approximation in which 
elastic wave propagation is ignored. Consolidation of a poroelastic body 
takes place when it is acted upon by surface loads. The study of consolidation 
of a poroelastic half-space or stratum has received much attention due to its 
geophysical and engineering applications. The aim of the present paper is to 
review recent work on the subject, indicating the assumptions made, methods 
used and conclusions drawn.

Keywords: anisotropic permeability; consolidation; half-space; multi-layered; 
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1. intrODUCtiOn

The earliest theory to account for the influence of pore fluid on the quasi-
static deformation of soils was developed by Terzaghi (1923), who 
proposed a model of one-dimensional consolidation. Biot (1941) was 

the first to develop the three-dimensional theory of poroelasticity. Subsequently, 
Biot (1955, 1956 a,b) extended his theory to consider the effect of anisotropy 
and wave propagation in fluid-filled porous media. Rice and Cleary (1976) 
reformulated Biot’s linear constitutive equations and replaced the new elastic 
constants introduced by Biot with more familiar constants (Poisson’s ratio 
and bulk modulus) evaluated in both the drained and the undrained states. 
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They solved a number of geophysical problems, including that of a suddenly 
introduced edge dislocation, concentrated line force and suddenly pressurized 
cylindrical and spherical cavities. Biot’s theory has been used very extensively 
for studying the consolidation of a poroelastic medium.

McNamee and Gibson (1960a) have shown that the task of determining 
the displacements and stresses in a poroelastic medium could be facilitated 
by the introduction of two displacement functions. Using these functions, 
McNamee and Gibson (1960b) solved plane strain and axially-symmetric 
consolidation problems of a semi-infinite clay stratum having incompressible 
fluid and solid constituents with isotropic permeability. Two problems of a 
semi-infinite body to the surface of which a uniform pressure is applied along 
an infinite strip or over a circular area were solved. Schiffman and Fungaroli 
(1965) extended the displacement function formulation to non-axisymmetric 
problems. They studied consolidation of a semi-infinite solid subjected to a 
uniform tangential load at a pervious and an impervious surface using three 
displacement functions. 

Bell and Nur (1978) used two-dimensional half-space models with surface 
loading to study the change produced by reservoir-induced pore pressure and 
stresses for thrust, normal and strike-slip faults. Normally the elastic stresses 
and pore pressure influence each other in a porous medium. However, they 
simplified the analysis by assuming that only stresses influence the pore pressure 
and not vice-versa. Booker and Randolph (1984) discussed the consolidation of 
a poroelastic half-space with cross-anisotropic deformation and flow properties 
using integral transforms. They studied the effect of circular and rectangular 
loading numerically. The stress and pore pressure changes produced by a 
steady periodic variation of water level on the surface of a uniform porous 
elastic half-space were evaluated by Roeloffs (1988), using coupled Biot 
equations of elastic deformation and pore fluid flow. Yue and Selvadurai (1995) 
examined the axisymmetric interaction between a rigid, circular, flat indentor 
and a poroelastic half-space. Three drainage conditions (completely drained, 
partially drained or completely undrained) at the surface of the poroelastic 
half-space were considered. Kalpna and Chander (1997) obtained stresses 
and pore pressure for an impervious elastic layer resting on a water-saturated 
porous elastic half-space when the upper surface of the layer is acted upon 
by a normal stress field varying harmonically in time. In a subsequent study, 
Kalpna and Chander (2000) calculated stresses and pore pressure in a porous 
elastic half-space for a time-varying finite reservoir surface load using Green’s 
function approach.

Mei et al. (2004) presented a finite layer procedure for Biot’s consolidation 
analysis of layered soil using a cross-anisotropic elastic constitutive model. 
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Both fluid and solid constituents were assumed to be incompressible.  
The immediate settlement, the final settlement and consolidation behaviour 
of a square footing were studied. Chen (2005) discussed the steady-state 
response of a multilayered poroelastic half-space to a point sink. Both the 
permeability and the poroelasticity of the medium were assumed to be 
transversely isotropic, but its fluid and solid constituents were assumed to 
be incompressible. Chen et al. (2005a) studied axisymmetric consolidation 
of a semi-infinite, transversely isotropic saturated soil subjected to a uniform 
circular loading at the ground surface. 

Singh and Rani (2006) solved two-dimensional plane strain problem of the 
quasi-static deformation of a multi-layered poroelastic half-space by surface 
loads. The stresses and pore pressure were taken as basic state variables. Both 
fluid and solid constituents were assumed to be compressible with isotropic 
permeability. Conte (2006) presented the analysis of coupled consolidation in 
unsaturated soil under the condition of plane strain as well as axial symmetry due 
to strip and circular loads. Fourier transform method for plane strain and Hankel 
transform method for axially-symmetric problem have been employed. Singh 
et al. (2007) discussed the quasi-static plane strain deformation of a poroelastic 
half-space with anisotropic permeability and compressible constituents by 
two-dimensional surface loads. An analytical solution was obtained by using 
a pure compliance formulation. Biot’s stress function was used to decouple 
the governing equations. The problem of normal strip loading was discussed 
in detail. In a subsequent study, Singh et al. (2009) investigated the problem of 
the consolidation of a poroelastic half-space with anisotropic permeability and 
compressible fluid and solid constituents by axisymmetric surface loads.

Ai et al. (2008) solved Biot’s three-dimensional consolidation problem 
for a saturated poroelastic multi-layered soil due to loading at an arbitrary 
interface in the Cartesian coordinate system using transfer matrix method. 
The corresponding problem of circular loading has been discussed by Ai et al. 
(2010a). Subsequently, Ai et al. (2010b) presented transfer matrix solutions 
to study the axisymmetric and non-axisymmetric consolidation of a multi-
layered soil under arbitrary loading. However, in all the above three studies, 
the medium is assumed to be incompressible and permeability isotropic.

The assumption of modeling the medium as a half-space is applicable 
only to consolidation problems where the thickness of the soil stratum is 
much greater than the dimensions of the loaded area. In other cases, it is 
necessary to model the poroelastic medium as a finite layer. Gibson et al. 
(1970) obtained the solution for consolidation of a uniform clay layer resting 
on a smooth-rigid base subjected to circular or strip loading. Booker (1974) 
presented a solution to the problem of the consolidation of a uniform clay 



Singh, S. J. 

Rani, S. 
Kumar, R.

4

Mathematical Journal of Interdisciplinary Sciences, Volume 2, Number 1, September 2013

layer subjected to general normal surface loading with the assumption that 
the lower surface of the strip adheres completely to a rigid base. Solutions 
for the case of uniformly loaded strip, circle and square were evaluated for 
a variety of Poisson’s ratio. However, it was assumed that the solid and fluid 
constituents were incompressible and permeability isotropic. Booker and 
Small (1987) presented a method for obtaining the consolidation of a layered 
soil subjected to strip, circular, or rectangular surface loading, or subjected 
to fluid withdrawal due to pumping by using direct numerical inversion of 
Laplace transforms. 

Using Biot’s theory of poroelasticity, Yue et al. (1994) presented an 
analytical investigation of the quasi-static development of excess pore pressure 
in a poroelastic seabed layer. The layer was modelled as a poroelastic medium 
of finite thickness, saturated with a compressible pore fluid and resting on 
a rough-rigid impermeable base. In a subsequent study, Selvadurai and Yue 
(1994) examined the axisymmetric contact problem related to the indentation 
of a fluid-saturated poroelastic layer resting on a rigid impermeable base 
due to circular foundation. Conte (1998) presented a numerical procedure 
to analyze consolidation problem involving anisotropic layered soils which 
contain incompressible as well as compressible pore fluid caused by surface 
loading.

Chen et al. (2005b) presented a semi-analytical solution to axisymmetric 
consolidation of a transversely isotropic soil layer resting on a rough impervious 
base and subjected to a uniform circular pressure at the surface. The medium 
was assumed to be transversely isotropic in its elastic and hydraulic properties. 
However, in numerical computations, only the effect of the elastic anisotropy 
was studied. An analytical solution for the consolidation of a soil layer subjected 
to vertical point loading was presented by Chen et al. (2007). The medium was 
assumed to have incompressible fluid and solid constituents with isotropic 
permeability. The axisymmetric consolidation problem of a finite soil layer has 
been studied by Ai and Wang (2008). A solution for plane strain consolidation 
of a soil layer with anisotropic permeability and incompressible fluid and solid 
constituents due to surface loads was obtained by Ai and Wu (2009). Rani  
et al. (2011) obtained the corresponding axisymmetric solution when the fluid 
and solid constituents are compressible.

Closed-form solutions for the steady-state distribution of displacement, 
pore-pressure and stress around a point sink have been obtained by Booker 
and Carter (1986). These solutions have been obtained for the long-term 
settlement caused by withdrawal of fluid from a point sink at finite depth 
below the surface of a homogeneous isotropic porous elastic half-space with 
isotropic permeability. Booker and Carter (1987a) presented a solution for the 
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transient effect of pumping fluid from a point sink embedded in a saturated, 
porous, elastic half-space. They assumed that the medium is homogeneous 
and isotropic with respect to its elastic properties, anisotropic with respect 
to flow of the pore fluid which was considered to be incompressible. The 
corresponding problem of withdrawal of a compressible pore fluid from a 
point sink in an isotropic elastic half-space with anisotropic permeability has 
been discussed by Booker and Carter (1987b).

Tarn and Lu (1991) presented analytical solutions of the long-term 
consolidation and excess pore water pressure due to fluid withdrawal from 
a saturated porous elastic half-space. In their analysis, both permeability 
and elastic properties were considered to be cross-anisotropic. Chau 
(1996) obtained fundamental solutions for the interior fluid point source 
and point forces embedded in a poroelastic half-space with incompressible 
constituents and isotropic permeability. Ganbe and Kurashige (2000) obtained 
fundamental solutions for an elastically isotropic poroelastic solid having 
transversely isotropic permeability due to instantaneous fluid point source and 
instantaneous point force by using Laplace-Fourier transform method. Taguchi 
and Kurashige (2002) obtained fundamental solutions for point forces acting 
on three orthogonal directions and an instantaneous fluid point source in a 
fluid-saturated, porous, infinite solid of transversely isotropic elasticity and 
permeability. These solutions are in explicit form but quite lengthy.

Wang and Kuumpel (2003) presented a numerical scheme to compute 
poroelastic solutions for excess pore pressure and displacements in a 
multi-layered half-space using mirror-image technique and an extension 
of Haskell’s propagator method. Using propagator matrix technique, Chen 
(2003) presented analytical solutions for the steady-state response of a multi-
layered poroelastic half-space subjected to pumping. Chen and Gallipoli 
(2004) derived an analytical solution for the steady state infiltration from a 
buried point source into a heterogeneous cross-anisotropic unsaturated half-
space. Lu and Hanyga (2005) obtained fundamental solution for a layered 
porous half-space subjected to a vertical point force or a point source. Singh 
and Rani (2007) formulated the two-dimensional plane strain problem of 
the quasi-static deformation of a multi-layered poroelastic half-space with 
compressible constituents by internal sources. Pure compliance approach 
is used to formulate the problem. The integral expressions for the surface 
displacement and fluid flux are obtained for a vertical line force, a horizontal 
line force and a fluid injection line source using propagator matrix approach. 

Further references to studies on the application of Biot’s theory of 
poroelasticity to consolidation problems can be found in Detournay and Cheng 
(1993), Wang (2000), Rudnicki (2001) and Singh (2005).
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2. COnStitUtivE EqUatiOnS

The four basic variables of poroelasticity are: stress, strain, pore pressure and 
increment of fluid content. Stress and strain are symmetric second-order tensors 
and, therefore, can be represented by six independent components each. Pore 
pressure and increment of fluid content are scalar quantities. Thus, there are 
fourteen variables in all: 

σij = σji  (six independent components of stress), 

∈
ij
 = ∈

ji
 (six independent components of strain), 

p (increase in pore fluid pressure), and 

ζ ( increment of fluid content).

We may take ∈
ij
, ζ as the seven independent variables and σ

ij
, p as the 

seven dependent variables, or, vice-versa. Biot’s constitutive equations consist 
of a set of seven linear homogeneous equations expressing the seven dependent 
variables in terms of the seven independent variables. Four poroelastic 
constants occur in the seven constitutive equations for an isotropic poroelastic 
material. The set of constitutive equations in which the stress is considered as 
a dependent variable is called the stiffness formulation. In contrast, the set of 
constitutive equations in which the strain is considered as a dependent variable 
is called the compliance formulation.

In the compliance formulation, the constitutive equations for an isotropic 
poroelastic body can be expressed in the form (Wang, 2000)

 ∈ −
+

+
−
+











ij ij mm ij ij=

G
p

1

2 1

1 2

1
σ σ α

v

v

v

v
δ δ ,  (2.1)

where G is the shear modulus, ν the drained Poisson’s ratio, α the Biot-Willis 
coefficient and δ

ij
 the Kronecker delta. Further,

 ζ =








+

α σ α
K KB

pmm

3
,  (2.2)

where K is the drained bulk modulus and B the Skempton’s constant. Equations 
(2.1) and (2.2) constitute the complete set of seven constitutive equations in 
the compliance formulation. Four poroelastic constants (e.g. G, ν, α, B) are 
needed for the complete characterization of the poroelastic material (K can be 
expressed in terms of G and ν).

Equations (2.1) and (2.2) can be inverted to obtain the constitutive equations 
in the stiffness formulation. We find



Consolidation 
of a Poroelastic 

Half–Space

7

Mathematical Journal of Interdisciplinary Sciences, Volume 2, Number 1, September 2013

 σ ζij ij
u

u
mm ij

u

u
ijG

B
= ∈ +

−
∈ −

+
−











2

1 2

1

3 1 2

v

v

v

v
δ δ

( )

( )
,  (2.3)

 ζ
α

= ∈ +α mm
uK B

p, (2.4)

where ν
u
 is the undrained Poisson’s ratio and K

u
 the undrained bulk modulus 

defined by the relations

 v
v

vu

B(1-2v)

B
=

+
− −

3

3 1 2

α
α ( )

,  

 
K

G
u

u

u

=
+
−

2 1

3 1 2

( )

( )
.

v

v

 

We can take (G, ν, ν
u
, B) as the four independent poroelastic constants 

instead of (G, ν, α, B). Detournay and Cheng (1993) chose (G, ν, ν
u
, B) as the 

four independent poroelastic constants. In fact, any four of the seven constants 
(G, ν, ν

u
, K, K

u
, α, B) can be chosen as the four independent poroelastic 

constants and the remaining three constants can be expressed in terms of these 
four constants. Some useful relations among various poroelastic constants are 
given by Singh (2005). For incompressible solid constituents of the poroelastic 
material, α = 1 (Detournay & Cheng, 1993; Wang, 2000). For incompressible 
solid and fluid constituents of the poroelastic material, α = 1, ν

u
 = 0.5.

Putting the value of ζ from (2.4) into equation (2.3), we obtain

 σ αij ij mm ij ij= 2G p .∈ +
−

∈











−

v

v1 2
δ δ  (2.5)

Similarly, from equations (2.1) and (2.2), we obtain

 ∈ −
+











 +ij ij

u

u
mm ij ij=

G
.

1

2 1

1

3
σ σ Β

v

v
δ ζδ  (2.6)

The importance of poroelastic coupling in a physical situation depends upon 
the rate of pore fluid flow relative to the change in the stress conditions. The 
drained and undrained cases are the limiting cases of the slow and fast loading, 
respectively. Relatively slow loading leaves the pore pressure unchanged in 
the control volume because fluid flow has adequate time to equilibrate with 
an external boundary. In contrast, little fluid flows into or out of the control 
volume if the loading is rapid.
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3. FiElD EqUatiOnS

For a fluid-saturated poroelastic medium, there are eleven unknown field 
variables: six stress components (σ

ij
 = σ

ji
), three displacement components (u

i
), 

pore pressure (p) and increment of fluid content (ζ). The eleven field variables 
are to be determined by solving eleven field equations: three equilibrium 
equations, one fluid diffusion equation, six constitutive equations for stress 
and one constitutive equation for pore pressure. The fluid diffusion equation is 
obtained by combining Darcy’s law of fluid flow with the equation of continuity 
and involves first time-derivative of stress. Consequently, the solution is time-
dependent. Since we are considering equilibrium equations rather than the 
equations of motion, the solution obtained will be quasi-static.

3.1. Equilibrium Equations

 
∂

∂
+

σ ji

j
ix

F =0,  (3.1)

where F (F
1
, F

2
, F

3
) is the body force per unit volume. Using the constitutive 

equations given in Section 2 in the equation of equilibrium (3.1), we obtain

 ∇ +( )+
+
−









∂
∂

=2 4
1

1
0σ η

ν
νii

i

i

p
F

x  (3.2)

where

 η α η=
−

−
≤ ≤









1 2

2 1
0

1

2

v

v( )
 (3.3)

is the poroelastic stress coefficient. Equation (3.2) is known as the compatibility 
equation.

3.2. Fluid Diffusion Equation

The increment of fluid content ζ is the volume of the fluid imported into a 
control volume per unit control volume. Fluid flux q is the volume of fluid 
crossing per unit area of the control volume per unit time. Therefore, the 
equation of continuity can be expressed in the form

 
∂
∂

= −
ζ
t

div q.  (3.4)

The negative sign is due to the sign convention that ζ is positive for fluid entering 
the control volume and q is positive for fluid leaving the control volume.

According to Darcy’s law of fluid, flow in a fluid-saturated isotropic porous 
medium
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 q = −χ grad p,  (3.5)

where χ is the Darcy conductivity. From equations (3.4) and (3.5), we obtain 
the fluid diffusion equation

 
∂
∂

= ∇
ζ
χ

t
p.2  (3.6)

Putting the value of ζ from the constitutive equation (2.2) into equation (3.6) 
and using equation (3.2) for zero body force, we obtain

 c
t B

p = 0,2
mm∇ −

∂
∂







 +






σ

3
 (3.7)

where

 c
GB u

u u

=
− +

− −
2 1 1

9 1

2 2( )( )

( )( )

v v

v v v

χ
 (3.8)

is the hydraulic diffusivity or consolidation coefficient. It is directly proportional 
to the rock permeability.

We note that five poroelastic constants occur in the field equations for an 
isotropic poroelastic medium. Out of these, four constants are introduced by 
the constitutive equations. The fifth constant (χ) is introduced by Darcy’s law. 
Using equation (3.8), we may choose c to be the fifth constant instead of χ. 

4.  PlanE Strain COnSOliDatiOn OF an iSOtrOPiC 
POrOElaStiC HalF-SPaCE

For plane strain deformation of a poroelastic medium in the x
1
x

3
-plane, the 

displacement components are of the form

 u u x , x , t  u  u u x , x , t1 3 3 1 31 1 2 30= = =( ), , ( ).  (4.1)

The constitutive equation (2.1) yields

 

2G p

2G p

G

∈ = − − +

∈ = − − +

∈ =

11 11 33 0

33 33 11 0

13 13

1

1

2

( ) ,

( ) ,

,

v v

v v

σ σ α

σ σ α

σ

σσ σ

σ σ σ α
21 23

22 11 33 0

0= =

= + −

,

( ) ,v p  (4.2)

where
 α α0 1 2= −( ) .v  
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Similarly, the compatibility equation (3.2) becomes

 ∇ + + =2
11 33 2 0( ) ,σ σ ηp  (4.3)

assuming zero body force. The diffusion equation (3.7) is replaced by

 c
t B

p
u

∇ −
∂
∂







 + +

+











 =2

11 33

3

1
0σ σ

( )
.

v
 (4.4)

Equations of equilibrium (3.1) reduce to

 
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
σ σ σ σ11

1

13

3

13

1

33

3

0 0
x x

 ,
x x

 (4.5)

and equation (2.2) becomes

 ζ =
+

+ +
+













α
σ σ

( )

( )
.

1

3

3

111 33

v

vK B
p

u

 (4.6)

The coupled system of equations (4.3) to (4.5) can be solved in terms of Biot’s 
stress function F (Roellofs, 1988; Wang, 2000):

 σ σ σ11

2

3
2 33

2

1
2 13

2

1

=
∂
∂

=
∂
∂

= −
∂

∂ ∂
F

x
   

F

x
   

F

x x3

, ,  (4.7)

The equilibrium equations (4.5) are then identically satisfied. Equations (4.3), 
(4.4) and (4.7) yield

 ∇ ∇ +( )=2 2 2 0F pη ,  (4.8)

 c
t

F
B

p
u

∇ −
∂
∂







 ∇ +

+











 =2 2 3

1
0

( )
.

v
 (4.9)

Eliminating F and p in turn, equations (4.8) and (4.9) lead us to the following 
decoupled equations in p and F

 c
t

p∇ −
∂
∂







∇ =2 2 0,  (4.10)

 c
t

F∇ −
∂
∂







∇ =2 4 0.  (4.11)

The general solution of equations (4.10) and (4.11) can be obtained by taking 
Laplace transform of these equations with respect to time and then solving 
the resulting equations in space variables. The stresses then follow from 
equation (4.7). Finally, the displacements can be obtained from equation (4.2) 
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on expressing strains in terms of displacements and integrating the resulting 
equations. After a lengthy algebra, we obtain (Singh and Rani, 2006)

 p
s

c
B e D e k B e D e

sin kx

c
1

-mz

1

mz

3

-kz

3

kz= −∫ + + − +
∞

( ) ( )










0

2

2 η
ξ

oos kx
dk









  (4.12)

 q
ms

c
B e D e k B e D e

sin kx

c
1

-mz

1

mz

3

-kz

3

kz= ∫ − + + +
∞

( ) ( )












χ ξ
0

3

2 η oos kx
dk









 ,  (4.13)

 

σ11
0

2 2
2 2

2 2

= ∫ +( )+ +( )


+ −( )

∞

m B e D e k B e D e

 k kz B e

1
-mz

1
mz -kz kz

3
-kzz

3
kzkz D e

sin kx

cos kx
dk+ +( ){ }










2 ,  (4.14)
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where 

 ξ= +( ) +








2

3
1 2

1 2

v B k
s

cu , ,
/

       m =  (4.19)

z = x
3
, q is the fluid flux in the z-direction and s is the Laplace transform 

variable. 
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We have found the solution in the Fourier-Laplace domain involving six 
arbitrary constants (B

1
, D

1
, B

2
, D

2
, B

3
, D

3
). These constants are to be found 

from the boundary conditions. Two integrations are required to be performed 
to get the solution in the space-time domain. The first integration is over the 
wave number k and can be evaluated, for example, by applying the Guass 
quadrature. The second integration is the inverse Laplace transform and can be 
evaluated by following one of the various numerical schemes available.

The plane strain solution of Biot’s coupled system of deformation-diffusion 
equations given by equations (4.12)-(4.18) can be used to find solutions of 
various problems involving boundaries parallel to the plane z = 0. Singh and 
Rani (2006) used this solution to study analytically the plane strain deformation 
of a multi-layered poroelastic half-space by surface loads using generalized 
Thomson-Haskell matrix method. Explicit expressions of the elements of the 
propagator matrix are given. Pan (1999) used Green’s function method to solve 
the consolidation problem of a multi-layered poroelastic half-space. However, 
the elements of the propagator matrix given by him are complicated functions 
of poroelastic constants and some of the elements are incorrect. Wang and 
Fang (2003) also studied the consolidation of a multi-layered poroelastic half-
space. However, only three poroelastic constants appear in their formulation as 
against five constants which define a general homogeneous isotropic poroelastic 
medium. Five poroelastic constants appear in our formulation.

5.  COnSOliDatiOn OF a POrOElaStiC HalF-SPaCE WitH 
aniSOtrOPiC PErMEaBilitY

Consolidation of a poroelastic half-space by surface loads has been 
studied extensively. However, in most of the investigations, the hydraulic 
permeability is assumed to be isotropic. Permeability determines the ability 
of the porous medium to conduct fluid flow in its pores and, therefore, can 
be different in different directions. In most cases, the soil deposits are the 
result of a sedimentation process that produces horizontal stratification planes. 
Consequently, permeability in the horizontal and vertical directions may differ. 
For important geophysical and engineering applications, it is useful to study 
the effect of anisotropy in permeability on the consolidation of a half-space by 
surface loads. 

Plane strain consolidation of a poroelastic half-space possessing isotropic 
permeability and compressible fluid and solid constituents has been considered 
in the last section. In this section, we study the corresponding problem when 
the permeability is anisotropic. It may be noted that the constitutive equations 
(4.2), the compatibility equation (4.3) and the equilibrium equations (4.5) are 
valid in this case also. However, the Darcy law (3.5) should be replaced by
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 q p x    q     q p x1 1 1 2 3 3 30= − ∂ ∂ = = − ∂ ∂χ χ, , ,  (5.1)

where q is the fluid flux and χi the Darcy conductivity in the x
i
direction. 

Consequently, the fluid diffusion equation (4.4) is replaced by the equation 
(Singh et al., 2007)

 
∂
∂

+ +
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11 33
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 (5.2)

where
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∂
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c
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c
x

 (5.3)

and

 c
G

   (i 1, 3)i
u

u
i=

− −
−

2 1

10
2

( )( )

( )

v v v

vα
χ =  (5.4)

is the hydraulic diffusivity.
The four unknowns σ11, σ33, σ13 and p are to be determined from the coupled 

system of the four equations listed in (4.3), (4.5) and (5.2). This system can 
be solved in terms of Biot’s stress function F introduced by equation (4.7). 
Equations (4.5), (4.7) and (5.2) yield

 ∇ ∇ +( )=2 2 2 0F pη ,  (5.5)

  ∂
∂

∇ +
−











 =

−
− −

∇
t

F p p
u

u

u

2 0 0
13
21

1

α α
v v

v

v v v

( )

( )( )
 (5.6)

Eliminating F and p in turn, equations (5.5) and (5.6) lead us to the following 
decoupled equations

 ∇ −
∂
∂







∇ =13

2 2 0
t

p ,  (5.7)

 ∇ −
∂
∂







∇ =13

2 4 0
t

F  (5.8)

Taking the Laplace transform of equations (5.7) and (5.8) with respect to 
time and then solving the resulting equations in space variables we obtain the 
general solution of these equations. For the consolidation of a homogeneous 
poroelastic half-space z ≥ 0 by surface loads, suitable solutions are of the 
form
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dk1
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
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∫
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sin

cos
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sin
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where the arbitrary constants A
1
, A

2
, etc. may be functions of k, x=x

1
, z=x

3
 

and

 m
c

c
k

s

c
= +











1

3

2

3

1 2/

.  (5.11)

Inserting the expressions for F and p from equations (5.9) and (5.10) in equation 
(5.6) and (5.7), we find

 A k m B1
2 2

12= −( )
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/ .η  (5.12)
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Equations (4.7), (5.1), (5.9) and (5.10) yield
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kdk.  (5.18)

Corresponding to the stresses given by equations (5.16) to (5.18), the 
displacements are found by expressing strains in terms of displacements in 
the constitutive equations (4.2) and then integrating the resulting equations. 
We find ,
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Equations (5.9) and (5.14) to (5.20) constitute an analytical solution of the 
governing equations representing the diffusion-deformation of a poroelastic 
half-space possessing anisotropic permeability and compressible fluid and solid 
constituents. The three arbitrary constants B

1
, B

2
 and B

3
 are to be determined 

from the boundary conditions. This solution has been used by Singh et al. (2007) 
to study the quasi-static deformation of a half-space by surface loading. The 
problem of the consolidation of a uniform half-space caused by normal disc 
loading has been discussed in detail. The following conclusions were drawn in 
relation to the consolidation of a poroelastic half-space by normal loads:
(i) The anisotropy in permeability may accelerate the consolidation process. 

However, it has no effect on the initial and the final settlements.

(ii) The compressibility of the solid constituents of the poroelastic medium 
may accelerate the consolidation process. However, it has no influence on 
the initial and final settlements.

(iii) In the short term, the compressibility of the solid constituents increases the 
pore pressure.

(iv) The compressibility of the fluid constituents increases the initial settlement. 
It has no influence on the final settlement.

(v) The compressibility of the fluid constituents decreases the short-term pore 
pressure.

 Chen (2004) used the state vector method to investigate the consolidation 
of a multilayered poroelastic half-space with anisotropic permeability. 
However, he assumed the solid constituent of the poroelastic material to be 
incompressible. For such a poroelastic material, the Biot-Willis co-efficient 
α = 1. Therefore, only three constitutive poroelastic constants are involved in 
his formulation as against four constitutive constants used here which define a 
poroelastic material with compressible solid and fluid constituents.

We have considered the above plane strain consolidation problem. The 
case of axial symmetry can be tackled by a similar procedure (Singh et al., 
2009). Further, equations (5.9) and (5.10) contain only negative exponentials 
suitable for a half-space. For a clay layer, we should choose solutions for p and 
F containing both negative and positive exponentials (Rani et al., 2011). 
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