Finite Groups with Two Class Sizes of Some Elements

Qingjun Kong*
Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
*Email: kqj2929@163.com

Abstract

Let G be a finite group. We prove that if $\{1, m\}$ are the conjugacy class sizes of p-regular elements of primary and biprimary orders of G, for some prime p, then G has Abelian p-complement or $G=P Q \times A$, with $P \in$ $\operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$ and $A \subseteq Z(G)$, with q a prime distinct from p. As a consequence, if $\{1, m\}$ are the conjugacy class sizes of ab p-regular elements of primary and biprimary orders of G, then $m=p^{a} q^{b}$. In particular, if $b=0$ then G has abelian p-complement and if $a=0$ then $G=P \times Q \times A$ with $A \subseteq$ $Z(G)$.

Keywords: conjugacy class sizes, nilpotent groups, finite groups. MSC:
20D10; 20D20

1. INTRODUCTION

A11 groups considered in this paper are finite. If G is a group, then x^{G} denotes the conjugacy class containing $x,\left|x^{G}\right|$ the size of x^{G} (following Baer, (1953)) we call $\operatorname{Ind}_{G}(x)=\left|x^{G}\right|=\left|G: C_{G}(x)\right|$, the index of x in $\left.G\right)$. The rest of our notation and terminology are standard. The reader may refer to Robinson (1983).

It is well known that there is a strong relation between the structure of a group and the sizes of its conjugacy classes and there exist several results studying the structure of a group under some arithmetical conditions on its conjugacy class sizes. For example, Itô (1953) shows that if the sizes of the conjugacy classes of a group G are $\{1, m\}$, then G is nilpotent, $m=p^{a}$ for some prime p and $G=P \times A$, with P a Sylow p-subgroup of G and $A \subseteq Z(G)$. In Beltrán and Felipe (2003) proved a generalization of this result for p-regular conjugacy class sizes and some prime p, with the assumption that the group G is p-solvable. Recently, in Alemany et al. (2009), they improved this result by showing that the p-solvability condition is not necessary. In the present paper, we improve this result by replacing conditions for all p-regular conjugacy classes by conditions referring to only some p-regular conjugacy classes.

Theorem A Let G be a finite group. If $\{1, m\}$ are the conjugacy class sizes of p-regular elements of primary and biprimary orders of G, for some prime

Mathematical Journal of Interdisciplinary Sciences Vol. 2, No. 2, March 2014 pp. 191-193

CHITKARA
 回 UNIVERSITY

Kong, QJ. $\quad p$, then G has Abelian p-complement or $G=P Q \times A$, with $P \in \operatorname{Syl}_{p}(G), Q \in$ $S y l_{q}(G)$ and $A \subseteq Z(G)$, with q a prime distinct from p. As a consequence, if $\{1, m\}$ are the conjugacy class sizes of p-regular elements of primary and biprimary orders of G, then $m=p^{a} q^{b}$. In particular, if $b=0$ then G has abelian p-complement and if $a=0$ then $G=P \times Q \times A$ with $A \subseteq Z(G)$.

2. PROOF OF THEOREM A

In order to prove our main result, we need the following two important lemmas.
Lemma 2.1 Let G be a group. Then the following two conditions are equivalent:
(i) 1 and $m>1$ are the only lengths of conjugacy classes of p^{\prime}-elements of primary and biprimary orders of G;
(ii) 1 and $m>1$ are the only lengths of conjugacy classes of p^{\prime}-elements of G.

PROOF (I) \Rightarrow (II)

Let a be any q-element of index m and b be any r-element of $C_{G}(a)$, where q $q \neq p$ and $r \neq p$. Notice that and since m is the largest conjugacy class size of p^{\prime}-elements of primary and biprimary orders of G, then $C_{G}(a b)=C_{G}(a)$ and hence $C_{G}(a) \subseteq C_{G}(b)$. This implies that $b \in Z\left(C_{G}(a)\right)$.

$$
C_{G}(a b)=C_{G}(a) \cap C_{G}(b) \subseteq C_{G}(a)
$$

Now let x be any non-central p^{\prime}-element of G and write $x=x_{1} x_{2} \cdots x_{s}, s \geq 3$, where the order of each x_{i} is a power of a prime $p_{i}\left(p_{i} \neq p, i=1,2, \ldots, s\right)$ and the x_{i} commute pairwise. As x is a non-central p^{\prime}-element of G, we know that at least one of the x_{i} such that x_{i} is non-central. Without loss of generality, we can assume that x_{1} is non-central. Now

$$
\begin{aligned}
C_{G}(x) & =C_{G}\left(x_{1} x_{2} \ldots x_{s}\right) \\
& =C_{G}\left(x_{1}\right) \cap C_{G}\left(x_{2} \ldots x_{s}\right) \\
& =C_{G}\left(x_{1}\right) \cap C_{G}\left(x_{2}\right) \cap \ldots \cap C_{G}\left(x_{s}\right) \\
& \subseteq C_{G}\left(x_{1}\right),
\end{aligned}
$$

and by the previous argument we may conclude that have that $x_{i} \in Z\left(C_{G}\left(x_{1}\right)\right)$ for $i=2, \cdots, s$. Hence we get that $C_{G}\left(x_{1}\right) \leq C_{\mathrm{G}}\left(x_{i}\right), i=2, \cdots, s$. Thus

$$
\begin{aligned}
C_{G}(x) & =C_{G}\left(x_{1} x_{2} \ldots x_{s}\right) \\
& =C_{G}\left(x_{1}\right) \cap C_{G}\left(x_{2} \ldots x_{s}\right) \\
& =C_{G}\left(x_{1}\right) \cap C_{G}\left(x_{2}\right) \cap \ldots \cap C_{G}\left(x_{s}\right) \\
& =C_{G}\left(x_{1}\right)
\end{aligned}
$$

It follows that the conjugacy class size of x is equal to the conjugacy class size of x_{1}, that is, m.

Lemma 2.2[5.Theorem A] Let G be a finite group. If the set of p-regular conjugacy class sizes of G has exactly two elements, for some prime p, then G has Abelian p-complement or $G=P Q \times A$, with $P \in S y l_{p}(G), Q \in S y l_{q}(G)$ and $A \subseteq Z(G)$, with q a prime distinct from p. As a consequence, if $\{1, m\}$ are the p-regular conjugacy class sizes of G, then $m=$ paqb. In particular, if $b=$ 0 then G has abelian p-complement and if $a=0$ then $G=P \times Q \times A$ with A $\subseteq Z(G)$.

Proof of Theorem A By Lemma 2.1 and 2.2, Theorem A holds.

ACKNOWLEDGEMENTS

The research of the authors is supported by the National Natural Science Foundation of China(10771132), SGRC(GZ310).

REFERENCES

Alemany, E., Beltrán, A. and Felipe, M.J. (2009). Finite groups with two p-regular conjugacy class lengths II. Bull.Austral.Math.Soc.79, 419-425. http://dx.doi.org/10.1017/S0004972708001287
Baer, R. (1953). Group elements of prime power index. Trans.Amer.Math.Soc. 75, 20-47. http://dx.doi.org/10.1090/S0002-9947-1953-0055340-0
Beltrán, A. and Felipe, M.J. (2003). Finite group with two p-regular conjugacy class lengths.
Bull.Austral.Math.Soc. 67, 163-169. http://dx.doi.org/10.1017/S000497270003361X
Itô, N. (1953). On finite groups with given conjugate types I. Nagoya Math. 6, 17-28.
Robinson, D. J. S. (1980). A Course in the Theory of Groups (Spring-verlag, New York-Heidelberg-Berlin).

Finite Groups with Two Class Sizes of Some Elements

