Finite Groups with Two Class Sizes of Some Elements

Qingjun Kong*

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China

*Email: kqj2929@163.com

Abstract Let *G* be a finite group. We prove that if $\{1,m\}$ are the conjugacy class sizes of p-regular elements of primary and biprimary orders of *G*, for some prime p, then *G* has Abelian p-complement or $G = PQ \times A$, with $P \in \text{Syl}_p(G)$, $Q \in \text{Syl}_q(G)$ and $A \subseteq Z(G)$, with *q* a prime distinct from *p*. As a consequence, if $\{1, m\}$ are the conjugacy class sizes of ab *p*-regular elements of primary and biprimary orders of *G*, then $m = p^a q^b$. In particular, if b = 0 then *G* has abelian *p*-complement and if a = 0 then $G = P \times Q \times A$ with $A \subseteq Z(G)$.

Keywords: conjugacy class sizes, nilpotent groups, finite groups. MSC: 20D10; 20D20

1. INTRODUCTION

Il groups considered in this paper are finite. If *G* is a group, then x^G denotes the conjugacy class containing x, $|x^G|$ the size of x^G (following Baer, (1953)) we call $\text{Ind}_G(x) = |x^G| = |G : C_G(x)|$, the index of x in *G*). The rest of our notation and terminology are standard. The reader may refer to Robinson (1983).

It is well known that there is a strong relation between the structure of a group and the sizes of its conjugacy classes and there exist several results studying the structure of a group under some arithmetical conditions on its conjugacy class sizes. For example, Itô (1953) shows that if the sizes of the conjugacy classes of a group *G* are $\{1, m\}$, then *G* is nilpotent, $m = p^a$ for some prime *p* and $G = P \times A$, with *P* a Sylow *p*-subgroup of *G* and $A \subseteq Z(G)$. In Beltrán and Felipe (2003) proved a generalization of this result for *p*-regular conjugacy class sizes and some prime *p*, with the assumption that the group *G* is *p*-solvable. Recently, in Alemany et al. (2009), they improved this result by showing that the *p*-solvability condition is not necessary. In the present paper, we improve this result by replacing conditions for all *p*-regular conjugacy classes by conditions referring to only some *p*-regular conjugacy classes.

Theorem A Let G be a finite group. If $\{1, m\}$ are the conjugacy class sizes of p-regular elements of primary and biprimary orders of G, for some prime

Mathematical Journal of Interdisciplinary Sciences Vol. 2, No. 2, March 2014 pp. 191–193

©2014 by Chitkara University. All Rights Reserved. Kong, QJ.

p, then *G* has Abelian *p*-complement or $G = PQ \times A$, with $P \in Syl_p(G)$, $Q \in Syl_q(G)$ and $A \subseteq Z(G)$, with *q* a prime distinct from *p*. As a consequence, if $\{1, m\}$ are the conjugacy class sizes of *p*-regular elements of primary and biprimary orders of *G*, then $m = p^a q^b$. In particular, if b = 0 then *G* has abelian *p*-complement and if a = 0 then $G = P \times Q \times A$ with $A \subseteq Z(G)$.

2. PROOF OF THEOREM A

In order to prove our main result, we need the following two important lemmas.

Lemma 2.1 Let G be a group. Then the following two conditions are equivalent:

- (i) 1 and m > 1 are the only lengths of conjugacy classes of p'-elements of primary and biprimary orders of G;
- (ii) 1 and m > 1 are the only lengths of conjugacy classes of P' -elements of G.

PROOF (I)⇒(II)

Let *a* be any *q*-element of index *m* and *b* be any *r*-element of $C_G(a)$, where $q \neq p$ and $r \neq p$. Notice that and since *m* is the largest conjugacy class size of p'-elements of primary and biprimary orders of *G*, then $C_G(ab) = C_G(a)$ and hence $C_G(a) \subseteq C_G(b)$. This implies that $b \in Z(C_G(a))$.

$$C_G(ab) = C_G(a) \cap C_G(b) \subseteq C_G(a)$$

Now let x be any non-central p'-element of G and write $x = x_1x_2 \cdots x_s$, $s \ge 3$, where the order of each x_i is a power of a prime p_i ($p_i \ne p$, i = 1, 2, ..., s) and the x_i commute pairwise. As x is a non-central p'-element of G, we know that at least one of the x_i such that x_i is non-central. Without loss of generality, we can assume that x_1 is non-central. Now

$$C_G(x) = C_G(x_1 x_2 \dots x_s)$$

= $C_G(x_1) \cap C_G(x_2 \dots x_s)$
= $C_G(x_1) \cap C_G(x_2) \cap \dots \cap C_G(x_s)$
 $\subseteq C_G(x_1),$

and by the previous argument we may conclude that have that $x_i \in Z(C_G(x_1))$ for $i = 2, \dots, s$. Hence we get that $C_G(x_1) \leq C_G(x_i), i = 2, \dots, s$. Thus

$$C_{G}(x) = C_{G}(x_{1}x_{2}...x_{s})$$

= $C_{G}(x_{1}) \cap C_{G}(x_{2}...x_{s})$
= $C_{G}(x_{1}) \cap C_{G}(x_{2}) \cap ... \cap C_{G}(x_{s})$
= $C_{G}(x_{1})$

It follows that the conjugacy class size of x is equal to the conjugacy class size of x_1 , that is, m.

Lemma 2.2[5.Theorem A] Let G be a finite group. If the set of p-regular conjugacy class sizes of G has exactly two elements, for some prime p, then G has Abelian p-complement or $G = PQ \times A$, with $P \in Syl_p(G)$, $Q \in Syl_q(G)$ and $A \subseteq Z(G)$, with q a prime distinct from p. As a consequence, if $\{1, m\}$ are the p-regular conjugacy class sizes of G, then m = paqb. In particular, if b = 0 then G has abelian p-complement and if a = 0 then $G = P \times Q \times A$ with $A \subseteq Z(G)$.

Proof of Theorem A By Lemma 2.1 and 2.2, Theorem A holds.

ACKNOWLEDGEMENTS

The research of the authors is supported by the National Natural Science Foundation of China(10771132), SGRC(GZ310).

REFERENCES

- Alemany, E., Beltrán, A. and Felipe, M.J. (2009). Finite groups with two p-regular conjugacy class lengths II. Bull.Austral.Math.Soc.79, 419-425. http://dx.doi.org/10.1017/S0004972708001287
- Baer, R. (1953). Group elements of prime power index. Trans.Amer.Math.Soc. 75, 20-47. http://dx.doi.org/10.1090/S0002-9947-1953-0055340-0
- Beltrán, A. and Felipe, M.J. (2003). Finite group with two p-regular conjugacy class lengths. Bull.Austral.Math.Soc. 67, 163-169. http://dx.doi.org/10.1017/S000497270003361X
- Itô, N. (1953). On finite groups with given conjugate types I. Nagoya Math. 6, 17-28.
- Robinson, D. J. S. (1980). A Course in the Theory of Groups (Spring-verlag, New York-Heidelberg-Berlin).

Finite Groups with Two Class Sizes of Some Elements