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Abstract One of the most important topics in the analysis on fractals 
is to construct the Laplacian. But this is actually a particular case of a 
wider problem – to construct geometrical objects on fractals. Currently 
studied methods sometimes lead to difficult problems, require wide 
knowledge from different branches of mathematics or does not lead to 
any strict computational methods, which could be easily applied for 
example in engineering.

In this paper a new attempt is presented. Fractals are treated as objects 
from so called differential spaces, i.e. broader category than manifolds. The 
usefulness of differential spaces is shown in particular fractal situations, when 
one studies some „weird” subsets of n, which are not manifolds themselves.
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1. INtrODuCtION

Recently the analysis on fractals evolved rapidly. This branch of 
mathematics focuses on generalisation of calculus on smooth manifold 
to calculus on fractals. One of the most important topics in this branch 

of mathematics is to construct the Laplacian. It is actually a particular case of 
a wider problem – to construct differential operators on fractals. And this is 
done in various ways, mainly on probabilistic, analytical or measure theoretic 
background (Barlow, 1998; Hambly and Kumagai, 1999; Jonsson and Wallin, 
1984; Harrison, 1998; Mosoc, 1998; Strichartz, 2006). Surprisingly no 
geometrical attempt was considered yet.

For example Kigami approximates a fractal from within by a sequence 
of finite graphs and obtains the Laplacian as the renormalised limit of graph 
Laplacians (Kigami, 1989, 2001). The attempt proposed in Jonsson and 
Wallin (1984) is a bit similar to the one proposed in the below paper. It bases 
on restricting function from n to a fractal. In Barlow (1998) a probabilistic 
attempt is widely discussed. The main advantage of such an attempt is that 
e.g. heat equation is well estimated. On the other hand studying this equation 
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by methods proposed in Kigami (2001) lead to serious problems. However the 
method in Barlow (1998) requires wide knowledge from probability theory and 
does not lead to any strict computational methods (able to easily applied e.g. in 
engineering).

In this paper a new attempt is presented. Fractals are treated as objects 
living not on manifolds, but on so called differential spaces. Differential 
spaces are broader category than manifolds (Sikorski, 1967). However whole 
differential geometry may be easily developed on them. The usefulness of 
differential spaces emerges for example in situations when one studies some 
„weird” subsets of n, which are not manifolds themselves. In this paper tangent 
vectors, differential forms, vector fields, etc. are constructed on fractals.

It is interesting that differential spaces were heavily studied in order 
to apply to cosmological problems. For example classically a singularity 
is not treated as a part of a space–time itself, but it may be included into 
„differential space–time”. Therefore e.g. the behaviour of such generalised 
differential forms and metrices was thoroughly studied, but it is surprising 
that little study was done to apply this generalisation to fractals. Also in 
studying Laplacian constructions on fractals no geometric method was 
discussed yet.

2. BAsICs OF DIFFereNtIAL spACes

For sake of clarity only the necessary facts about differential spaces will 
be given here. In Buchner et al. (1993) one may find a list of papers about 
differential spaces with brief description about the content.

Suppose one is given a set M. Let denote by C
0
 a set of some real functions 

on M, i.e. C
0
 := {f

1
,...,f

n
}, where f

i
 : M → n for all i = 1,...,n. Now one may 

consider a topological space (M, τ), where τ is the weakest topology on M in 
which all functions from C

0
 are continuous.

Def. 2.1. Function f is called a local C
0
–function, if for every point x ∈ M there 

is a neighbourhood U ∈ τ and g ∈ C
0
, such that f |U = g|U.

The set of all local C
0
–functions on M is denoted by (C

0
)

M
.

Def. 2.2. sc(C
0
) := {ω  (f

1
,...,f

n
) | ω ∈ C∞(n),f

1
,...,f

n
 ∈ C

0
}

The above family of functions is called superposition closure.

Def. 2.3. C is called a differential structure on M, if it is closed with respect 
to localisation (C = C

M
) and closed with respect to superposition with smooth 

Euclidean functions (C = scC).
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Def. 2.4. A pair (M, C) such that M is an arbitrary set, and C is a family of 
functions such that C = (scC)

M
 is called a differential space.

Def. 2.5. If C
0
 := {f

1
,...,f

n
} is some family of real functions on M and C = (scC

0
)

M
 then the pair (M, C) would be called differential space generated by C

0
. It is 

denoted by C = genC
0
.

For example (n,C∞(n)) is generated by projections C
0
 = {π

1
,...,π

n
}, 

where π
i
 : n → n for i =1,...,n. It is a classical n–dimensional smooth 

manifold. However by considering more „unusual” functions in family C
0
 one 

may obtain an object which would not be a smooth manifold.

Def. 2.6. Mapping F : M → N is called smooth, if f  F ∈ C for all f ∈ D.
It can be simply proved that in order to verify smoothness one does not 

have to check all functions from D, but it is enough to check smoothness on 
generators from D

0
.

Def. 2.7. F is called diffeomorphism, if it is injective and both F and F−1 are 
smooth (in the above sense).

In case there exist some fixed n ∈ N and a countable (or at least finite) 
covering {A}

i∈I
 of M such that for all i ∈ I there exists diffeomorphism F

i 
:  

(A
i
, C

Ai
 ) → (n, C∞(n)) then (M, C) is a smooth manifold (in a classical 

sense). This definition is equivalent to the more common one using charts. 
However it is interesting that differential calculus and differential geometry 
can be studied also on differential spaces (as their names suggests so),which 
are not differential manifolds. Smooth manifold are only a special case of 
differential spaces. This is why differential spaces are generalisation of a 
classical manifold concept. Moreover one may notice that classically any 
function f ∈ C∞(n) is called smooth. Therefore if one considers a differential 
space (M, C), which might not be a manifold, the family of functions C can be 
treated as some analogue of family of classically smooth functions.

3. CONstruCtION OF geOmetrIC OBjeCts 

Def. 3.1. If (M, C) is a differential space, then any linear mapping v : C → n, 
which satisfies the Leibnitz rule in p ∈ M, i.e. v(fg)= v(f)g(p) + f(p)v(g), for all 
f, g ∈ C, is called a tangent vector to (M, C) at point p.

All tangent vectors to (M, C) at p constitute a tangent vector space to (M, 
C) at p. This vector space is denoted by T

p
M. Addition and multiplication by 

scalars are defined in the usual sense.
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Def. 3.2. A mapping X : M →  p M∈ , T
p
M p  → X(p) ∈ T

p
M is called a vector 

field on (M, C).

Def. 3.3. A tangent vector field X to (M, C) is called smooth, if for all f ∈ C the 
function X(·)(f): M → n, X(·)(f): p  → X(p)(f) belongs to C.

Set of all smooth tangent vector fields to (M, C) is denoted by X (M).

Def. 3.4. If F :(M, C) → (N, D) is smooth, then dF :  p M∈  T
p
M →  q N∈  T

p
N, 

defined by the formula (dF (v))(f) := v(f ◦ F ) for all f ∈ D, is called a differential 
of mapping F

In particular dF T Mp
 is called a differential of F at point p ∈ M and is denoted 

by dF
p
.

Def. 3.5. A triple ((M, C), (TM, TC),π) is called a tangent bundle to a differential 
space (M, C), if:

TM •	 : =  p M∈ T
P
M,

π•	  : TM → M is a projection, 

TC•	  := gen({f ◦ π | f ∈ C}∪{df | f ∈ C}).

Consider TkM := {(v
1
,...,v

k
) ∈ TM ×· · ·×TM | π(v

1
)= ··· = π(v

k
)}, k ∈ N, called 

Whitney sum. One has a product structure TC ×· ··× TC on TM ×· ··× TM.

Def. 3.6. Smooth mapping ω : TkM → n is called a pointwise differential 
k–form, if for all p ∈ M ω

p
 := ω |

T Mp
k  is n–linear and skew–symmetric.

The set of all pointwise differential k–forms on (M, C) is denoted by Ak(M). 
They were studied by Kowalczyk (1980).

Def. 3.7. A mapping ω : χ (M) ×···× χ (M) → C is called a global differential 
form on (M, C), if this mapping is multilinear and skew–symmetric.

The set of all global differential n–forms on (M, C) is denoted by Ωn(M). 
For ω, η ∈ Ωn(M), X

1
,...,X

n
 ∈ χ (M) and f ∈ C, if addition and multiplication 

is defined by the formulas (ω + η)(X
1
,...,X

n
) := ω(X

1
,...,X

n
)+ η(X

1
,...,X

n
) and (f 

· ω)(X
1
,...,X

n
) := fω(X

1
,...,X

n
) then Ωn(M) has a structure of C–module. Ω0(M) 

: = C.

Def. 3.8. The exterior product of k–form ω and l–form η is defined by the 
formula (ω ∧ η)(X

1
,...,X

k
,X

k+1
....X

k+l
) : = σ∈ +∑ Sk l sgn(σ) ω(Xσ

(1)
,...,Xσ

(k))
 

η(Xσ
(k+1)

,...,Xσ
(k+l))

.
Ω(M) : = Ω = ⊕ Ω≥( ) : ( )M Mn

n
0  is a graded algebra over n.
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Def. 3.9. Exterior derivation, d, in Ω(M) is defined by the formula (dω)(X) := 

X(ω), if ω ∈ Ω0(M) and X ∈ X (X). In case ω ∈ Ωk(M), k ≥ 1 the formula is (dω)

(X
1
,...,X

k+l
):= i

k l
=
+∑ 1 (−1)i+1 X

i
(ω(X

1
,..., X̂

j
,...,X

k+l
))+ Σ

i≤j
(−1)i+j ω([X

i
,X

j
],X

1
,..., 

X̂
i
,..., X̂

j
,...,X

k+l
), where X

1
,...,X

k+l
 ∈ X (M) and X̂

i
 stands for dropping X

i
.

It can be easily checked that d :Ωk(M) → Ωk+l(M) satisfies the below 
conditions:

d•	  is n–linear,
d•	 (ω ∧ η)= dω ∧ η +(−1)kω ∧ dη, for ω ∈ Ωk(M),η ∈ Ωl(M),
d•	  ◦ d =0.

Def. 3.10. n ∈  is called a local differential dimension of (M, C) at point p, 
if dim T

p
M = n.

For example one may consider M = {n−1 | n ∈ }∪{0}. Then dim T
0
 = 1 

and dim T
p
M = 0 for other points. It is a nice illustrative example of difference 

with a topological dimension.

Def. 3.11. n ∈  is called a differential dimension of (M, C) at point p, if for all 
p ∈ M dim T

p
M = n and for every p ∈ M and every v ∈ T

p
M there is a smooth 

tangent vector field X on (M, C), such that X(p)= v. Then (M, C) is called a 
differential space of constant dimension.

If (M, C) has constant differential dimension, then set of all global forms 
is isomorphic to set of all pointwise differential forms. The isomorphism h

M
 : 

Ak(M) → Ωk(M) is given by the formula (h
M
ω)(X

1
,...,X

k
)(p) : = ω(X

1
(p),...,X

k
(p)), 

where ω ∈ Ak(M),X
1
,...,X

k
 ∈ X (M),p ∈ M, k = 1,... and h

M
 := id

C
 in case of k =0 

(Heller et al., 1989)

4. the CAse OF LApLACIAN

In a similar way as in Sec. 3 the Laplace operator may be constructed. 
The Laplace operator, Δf, is a differential operator given in terms of the 
divergence and the gradient of a function f on the Euclidean space. One way 
of generalising this operator is to express it in terms of differential forms and 
Hodge dual (Flanders, 1989). It is then defined by the formula Δf := d *  df, 
where *  denotes Hodge dual.

The Hodge dual operator * : Ωp(M) → Ωn−p(M) is a linear mapping, 
therefore completely determined by the formula ω ∧ ∗η  =  ω η,  e1 ∧· ··∧ e

n
, 

where  〈⋅ ⋅〉,   denotes inner product. However the inner product may easily be 
constructed as non–degenerated, symmetric, 2–form on (M, C). The properties 
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of it in the differential spaces category have been studied thoroughly, for 
example in Heller (1989).

On the other hand the Hodge dual operator may be computed by 
remembering that it is a linear operator and that:

 *(1) = •	 e
1
 ∧· ··∧ e

n

 *(•	 e1 ∧· ··∧ e
n
)=1

 *(•	 e1 ∧· ··∧ e
k
)=  e e e e e ek k k n1 1 1, .... , ....+ ∧ ∧

5. AppLICAtION 

An easy example of a differential space, which is not a manifold is a cross on 


n, i.e. (M, C), where M := {(x, y) ∈ n | xy = 0} and C := C∞|M . Due to Def. 
3.10 the local differential dimension is 1 if x  ≠ 0 or y ≠ 0, and 2 in othercase. 
Indeedinpoints {(x, y) ∈ M | x  ≠ 0,y = 0} thetangentspaceis generated by ∂

∂x x|( , )0

, and respectively in points {(x, y) ∈ M | y ≠ 0 ,x = 0} is generated by ∂
∂y y|( , )0 . 

Meanwhile ∂
∂

∂
∂x y| , |( , ) ( , )0 0 0 0  generate tangent space in point (0, 0).

Equivalently one may think of the above operators as acting on functions 
evaluated in point sequences. For example in the first case, for an arbitraty 
f ∈ C, it would be ∂

∂
−
−=

→

f
x x x

f x f x

x xn x

n

n
| lim( , )

( , ) ( , )

| |0
0 0 . It is also known that in case 

of M ⊂ n any tangent vector may be expressed by the above limit formula 

(Kowalczyk, 1980).
Consider now the von Koch curve and the process of obtaining it from 

real line by recursively replacing line segments by triangles. Due to the above 
arguments in each step the number of points in which a tangent space has a 
local differential dimension 2 is increased. In classical differential manifold 
language a number of points of non–differentiability increases. But in 
differential spaces language it is stressed that only local dimension changes. 
As a fractal, obtained after infinite steps, von Koch curve has everywhere local 
differential dimension 2 (which is in this case analogous of being nowhere 
differentiable). So the general constructions from Sec. 4 may be build on von 
Koch curve considered as a differential space.

Similarly local differential dimension for Sierpinski triangle is 3 except 
three vertices of the „big”, „covering” triangle where it is 2.

6. CONCLusIONs

It is interesting that by dropping one axiom the whole differential geometry 
may be studied on objects from some wider category than differential 
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manifolds. Moreover the fact that at least some fractals are differential 
spaces opens a possibility of further studies. As far as now it seems that 
such an approach has not been taken.

Finally it is worth to mention that for closed subsets of Rn geometrical 
objects may be constructed by pullbacks. So by widening the considered 
category to differential spaces one gains not only a powerful but also a simple 
tool. Further studies are planned, e.g. on Weierstrass function.
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