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Abstract: A sequence of independent count data X, X, X X ......X,
where observations from a particular case of discrete Burr family type III
distribution with distribution function F,(¢) at time t later it was found that
there was change in the system at some point of time m and it is a reflected in
the sequence X,, by change in distribution function F, () at time t. The Bayes
estimates of change point and parameters of Particular case of Bur Type III
Distribution are derived under Linex and General Entropy loss functions.
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1. Introduction

A survey of the literature concerning the Burr family of distributions is given
in Burr [1] and Fry [2]. Nair, and Asha [3] and sreehari M. [4] attempted to
obtain discrete analogues of Burr’s family. We consider Discrete Burr Type 111
distribution with change point

A countdata model based on discrete burr type III distribution is specified
to represent the distribution of a count data set under dispersion and using this
model statistical inferences are made. Countdata systems are often subject to
random changes. It may happen that at some point of time instability in the
sequence of count data is observed. The problem of study to estimate the time
when this change has started occurring This is called change point inference
problem. Bayesian ideas has been often proposed as veiled alternative to
classical estimation procedure in the study of such change point problem. The
monograph of Broemeling and Tsurumi [5] on structural change, Jani P.N. and
Pandya M.[6], Pandya M. .[7] , Pandya, M. Pandya, S and Andharia, P. 8] are
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useful reference. In this paper, we develop probability models that account
for changing a Particular case of Bur Type III distribution and have obtained
Bayes estimators of change point m 6 6, .

2. Proposed Change Point Model

Let X,X, . X,(n>3) be a sequences of observed count data. Let first m
observations X,X, X  have come from Particular case of Bur Type III
Distribution with probability mass function as,

x, +1)—6"
png 0<6 <1,x=0,1,2...
(xi—i-l)!
i=12...m
0t+1
With F(1)=1--—

(r+1)!

And later n-m observations X, ,...... ,X, have come from Particular case of
Bur Type I Distribution function with probability mass function as,

(x,+1-0,)— 65
(xi+1>!

D= 0<6,<1,x=0,1,2...

i=m-+1...n

t+1

0
ith F,(1)=1——2
with £5(1) (t+1)!

Where the change point m is unknown parameter

The likelihood function, given the sample information
)—( = (Xl ’X2,,.M..“Xm’Xm+l (N ""Xn) iS

L(gl’ez”"|)—‘>:<xi+l_9‘> 6 (x+1-6,)" "6 (1)
k3
Where s, =X x,
s, =27 X,
ky =117 (x, +1)! o
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3 Posterior Distribution Functions Using Informative Prior

As in Broemeling et al. [5], we suppose the marginal prior distribution
of m to be discrete uniform over the set {1, 2, ....n—1}

g|(’n):n_1

We consider the ratios %, and ¥,, depending on the distribution at time

t and given as,
77Z}it =1-F

it?
t+1
01’

N (t+1)!

i=1.2
©)

We also suppose that some information on these ratios is available, and can be
known in terms of prior mean value f, and p,, we suppose the Independent
log inverse gamma (LIG) priors on v, and 1),, with respective means /,, and
Hy, and standard deviation o, viz.

g (¥,)=

b;ai b—1 a;—1 .
Ta, (A [In(l / %ﬂ a,b,>0i=1,2 @

0<y, <1

If the prior means Ky and f, and a common standard deviation o, are
known, Then the hyper parameters can be obtain by solving

ki
1+b%::{1+bli] i=12 %)
In(,uw,) ]
a,=——"—= 1=12
In b ©
b, +1
Where
2 2
In (MU"‘) +<Ul“"i> ]

k= i=12 @)

In(,uwi )

We assume that ,,,1,, and m are priori independent. The joint prior density
is say,

& (Y thyom) = kg (170, ) Tin(1 7" ()
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n—1Taq, I'a,
The likelihood function (1) has been reparameterized in term of m and
0&1
= i=12
(T
1 m
(wlt th m | X) = X +1 k <w1t) (/l/)lt) [H
(10)
x4 1k, (i, ) (1/]2[)% K
1
where k, =[(¢+1)!]+ (11)
The Joint posterior density of ¥,,%,,,and m say, g, (wl,,%t,m | X ) , results
in
L(¢1r’w2t’m | )—()gl (wlt’th’m>
X =
gl (wlt’¢2t’m|—) hl()_()
B 1 m
k, (4, >,+1 At [In(1/4,)]" 1=k, (3, )0 (12)
B 1 n—m
(1, )T} M (174, '[x,- 1=k (1, | (X)
Where
K, :LKlKiY" (13)
k3
By (X) =SS s G [ () B (1, )] g,
“_ 14
F ) i1 [ (1
=X""T (m)
Where
Jrjl Sy " S Jrjz -
- ——=+b
T (m)=%7 3] K" (m)Tq, rrnRd Bee vt
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(5 +1)" (=1)"

K" (m)=K,

Ji

m

1 n—m

X, + 1- kz (1/]2;)(tT

K, is givenin (13)

m k2jl
(x, +1)j,

X+ 1—k, (¢, | =(x,+ ) (= 1)/1[J

SCRRIRE S
J>

. |n—m| k,j,
—1
< ”2[ i o+
k21
(x, —i—Jl) (w“) 0 and
% i
EFnA

Marginal Posterior Density of %, and of %,, are obtained by integrating
the joint posterior density of 1, and 1), , m given in (12) with respect to ¥,
and with respect to v, respectively and summing over m

g (1, | X) =205 5K (m)(¢h, ) )mj) “[ (1/¢l,)]

a —
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B (16)
sn_sm+j2 ’ -1
= h' (X
az (t+l) +b2 1 (_)
T2
& (1, 1 X) == S S K ) (4, ) 0 (174" 1(17)
s, i ]
I b| k(X
al (t+1) + 1 1 (_)

Now change of variables, v,i1=1,2 in (16) and (17) respectively, we get
marginal posterior density of 6, and ¢, as,

Ym+j|+ 171]
i . 0t+l (t+1)
(0 1X)= X5 K )| oo (18)
In (r+1)! " S5 th _azh (X)
91z+1 2 (t+1> 2 -
o i
& (6,1X) =237 30K (m) ]
(1 ¥ )! (19)
a,—1 —a
(t+1>! s, + 1 -1
Inl——2° m b h (X
[n 0£+1 1 <t+1) + 1 1 (_)
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The marginal posterior density of change point m is say &, (m | X ) is obtained
as

8 (m | )_() = f:) :)gz (‘91"92 |)_()d01d92
T, 20)
Y T (m)

m=1"1

Where 7,(m) same as in (15)

4. Bayes Estimates of Change Point & Other Perameters Under
Asymmetric Loss Functions

In this section, we derive Bayes estimator of change point m under different
asymmetric loss function using both prior considerations explained in section
3. A useful asymmetric loss, the Linex loss function was introduced by Varian
[9 ] and expressed as,

L, (a,d):exp.[q1 (d—a)}—ql(d—a)—l,ql = 0. 21

The sign of the shape parameter ¢, reflects the deviation of the asymmetry,
q,>0.

Minimizing expected loss function E_[L, (m, d)] and using posterior
distribution (20), we get the bayes estimates of m , using Linex loss function
as,

. e "T (m)
m =—1/q, |z &2 22
L ql \ m=1 Elnn;lln (m) ( )

Where 7,(m) is same as in (14).

Minimizing expected loss function E, [L4 (Gl,d)] and using posterior
distribution (18) and we get the bayes estimates of ¢, using Linex loss
function as

1 01+] X(;ill)l +b—1
0, (1) = ——In[ s g () 1] 2
IL( ) ql m=1"j;=0""j,=0 ( )fo ([+1>[
(23)
a,—1 L
(r+1)! y s s 4 !
X|In|— e hndo Ta, |22—"m 72 1} (X
QI’H 1-% ([+1> 2 1 (_)
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Minimizing expected loss function E, [L4 (Hz,d)] and using posterior
distribution (19) and we get the bayes estimates of 6,, using Linex loss
function as

S, =S, +Ja bl
. 1 . [ gt () l III Distribution
0 =——In|X" """ ¥ "K —
b (D) 1 2, 124 0%, =0 (m)j; <t+1)!
(24)
L o A R
x| i ", Ty |y Hh

General Entropy loss function (GEL), proposed by Calabria and Pulcini [10]
is given by,

L,(a,d)=(d/a)" —g,In(d/a)—1,

using posterior distributions (20), we get Bayes estimate of change point m
under GEL ,say m,. as

L
a3

Zn—l 7q3T
m—l(m) , (25)

m=1

m=[E e | =P

minimizing expectation [Eﬁl L5 (6,.d)] and using posterior distributions (18),
we get Bayes estimate of ¢, using General Entropy loss function

1

b =[E(0)]

et
ok 0f+1 (+D) I
=S S ) [ | —
Ji=0 J2=0 (l+1)‘
(26)
1
a—1 —a, o
t+1 | - - + . B q3
xlln <0—+1> 0-df, Ta, sz o (X)
1

minimizing expectation [Ee2 L5 (6,.d)] and using posterior distributions (19),
we get Bayes estimate of ¢, using General Entropy loss function as
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1

- fefo

1 0l+1 : :1;;& +b2_ll
_ y\n—mym n—m pr¥* 2 (27)
S AT K o) [ T

1

a1 —q T

(r+1)! ) s, +J . B

x| In QIT 02 o d92 Fal ([ n 1>1 + bl hl ]()_()
2
5. Numerical Study

We have generated 30 random observation, the first 15 observations from
discrete Burr type III distribution with v, = 0.017 att=2 and ,, = 0.0085 at
t=2 ¢, and v,, themselves were random observations from log inverse
gamma distributions with means s, =0.017,1,,, = 0.0085, and standard
deviation o, = 0.01 respectively, resulting in a, =0.01,b, =10,a, = 0.009
and b, =25. These observations are given in Table 1 first row.

We have generated 6 random sample from proposed change point model
discussed in section-2 with n=30, 50, 50 and m=15, 25, 35, 61:0.47, 0.2,
¥, =0.017, 0.0013 at =2 and v,, =0.0085, 0.0208 at t= 2 and 0,= 0.8, 0.5.
As explained in section 3, v, and 1),, themselves were random observation
from LIG prior distributions with prior means f, , i, respectively. These
observations are given in Table 1 .We have calculated posterior means of m,
0 and 6, selected samples and the results are shown in Table 2

Table 1: Generated Samples of proposed change point model

Sample Actual
Sample No. n m 91 =047 02 =0.8 wlt q/;zf
1 30 15 0x8, 1x7 0x2, 1x7, 2x4,3x2 0.0170 0.0085
2 50 25  Ox13, 1x11, 0x4, 1x13 ,
2x1 2x6,3x2
3 50 35 0x19, Ix13, 0x2, 1x7,2x5, 3x1
2x3
6,=0.2 0,=0.5
30 15 0x14, 1x1 0x7, 1x5, 2x3 0.0013 0.0208
5 50 25 0x21,1x4, 0x13, 1x9, 2x3
50 35 0x29,1x6 0x8, 1x5, 2x2
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Table 2: Bayes Estimate of m, 0, and 6, under SEL

Bayes Estimates of 01 and 62

Sample N Bayes Est.imates of m (Posterior Mean)
No. (Posterior Mean)
Posterior mean of ) Posterior mean of ¢,
1 30 15 0.47 0.0085
2 50 25 0.47 0.0085
3 50 35 0.47 0.0085
4 30 15 0.2 0.021
5 50 25 0.2 0.021
6 50 35 0.2 0.021
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We also compute the Bayes estimates of change point and 0, and 0,

Using the results given in section 4 for the data given in table 1 and for different
values of shape parameter ¢, and ¢;, the results are shown in Tables 3 and 4.

Table 3 shows that for small values of |q|, g, =0.007, 0.12, 0.23 the values
of the Bayes estimate under a Linex loss function is near by the posterior
mean. Table 3 also shows that, for ¢, 1.5, 1.2, Bayes estimate are less than

actual value of m = 15.

Table 3: The Bayes estimates using Linex Loss Function for sample 1

0,=0.47,0,=0.8 4 m,  Posterior mean of f  Posterior mean of
0.007 15 0.47 0.83
Log Inverse Gamma 0.12 15 0.47 0.82
Prior
0.23 15 0.46 0.80
1.2 14 0.44 0.73
1.5 13 0.43 0.72
-1.0 16 0.52 0.84
-2.0 17 0.54 0.83

For ¢, = q,=-1,-2,Bayes estimates are quite large than actual value m = 15.
It can be seen from Table 3 and 4 that if we take the value of shape parameters

of loss function negative , underestimation can be solved.

Table 4 shows that, for small values of |q], g, = 0.007, 0.12, 0.23 General
Entropy loss function, the values of the Bayes estimate under a loss is near by
the posterior mean. Table 4 also shows that, for ¢; = 1.5, 1.2, Bayes estimates
are less than actual value of m = 15.
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Pandya, S 1.

6, =0.47,0, = 0.8 9 m. 0 0,
0.007 15 0.47 0.81

Log Inverse Gamma Prior 0.12 15 0.46 0.82
0.23 15 0.45 0.84

1.2 14 0.42 0.74

1.5 13 0.40 0.73

-1.0 15 0.53 0.85

-2.0 17 0.55 0.87

6. Sensitivity of Bayes Estimates

In this paper, we are studying five Bayes estimator of change pont and other
parameters of theproposed change point model based on particular case of burr
type III distribution, a part from that we can consider posterior mean is more
appealing. .Table 5 shows that, when prior mean f, =0.017 actual value of
Yy,s 1, =0.006 and0.0095 (far from the true value of 1,, =0.0085), it means
correct choice of prior 1, and wrong choice of prior of v,, ,the value of Bayes
estimator posterior mean of m does not differ.

Table 5: Bayes Estimate of m for Sample 1

Hy, Hy, m
0.017 0.006 15
0.017 0.0085 15
0.017 0.0095 15
0.012 0.0085 15
0.017 0.0085 15
0.022 0.0085 15

7. Simulation Study

we have also generated 10,000 different random samples with m=15,
n=30 6= 047, 6,=08,g,=q,=0.1¢, =0.017,4,, =0.0085. and
obtained the frequency distributions of posterior mean, m,,m, , with the
same prior consideration explained as in numerical study. The result is
shown in Table-8.
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Table 6: Bayes Estimate of m for Sample 5

*

s, [y, "
0.0013 0.011 25
0.0013 0.021 25
0.0013 0.041 25
0.0001 0.021 25
0.0013 0.021 25
0.0025 0.021 25

Table 7: Bayes Estimate of m for Sample 6

*

Iy, o, m
0.0013 0.012 35
0.0013 0.021 35
0.0013 0.043 35
0.0001 0.021 35
0.0013 0.021 35
0.0024 0.021 35

Table 8: Frequency distributions of the Bayes estimates of the change point

Bayes estimate % Frequency for
01-13 14-17 17-30
Posterior mean 11 79 10
m* 20 65 15
m* 22 66 12

8. Conclusion

We conclude that if we are interested for avoiding overestimation as well as
underestimation Linex and General Entopy loss function are more appropriate.
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