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Abstract: a sequence of independent count data X X X X Xm m n1 2 1, , , ..,……… …+  
where observations from a particular case of discrete Burr family type III 
distribution with distribution function F t1( )  at time t later it was found that 
there was change in the system at some point of time m and it is a reflected in 
the sequence Xm  by change in distribution function F t2 ( )  at time t. the Bayes 
estimates of change point and parameters of Particular case of Bur type III 
Distribution are derived under Linex and General Entropy loss functions. 

Keywords: Bayes estimate, Change point, discrete Burr type III distribution.

1. Introduction

a survey of the literature concerning the Burr family of distributions is given 
in Burr [1] and Fry [2]. Nair, and asha [3] and sreehari M. [4] attempted to 
obtain discrete analogues of Burr’s family. We consider Discrete Burr type III 
distribution with change point

a countdata model based on discrete burr type III distribution is specified 
to represent the distribution of a count data set under dispersion and using this 
model statistical inferences are made. Countdata systems are often subject to 
random changes. It may happen that at some point of time instability in the 
sequence of count data is observed. the problem of study to estimate the time 
when this change has started occurring this is called change point inference 
problem. Bayesian ideas has been often proposed as veiled alternative to 
classical estimation procedure in the study of such change point problem. the 
monograph of Broemeling and tsurumi [5] on structural change, Jani P.N. and 
Pandya M.[6], Pandya M. .[7] , Pandya, M. Pandya, S and andharia, P. [8] are 
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useful reference. In this paper, we develop probability models that account 
for changing a Particular case of Bur type III distribution and have obtained 
Bayes estimators of change point m θ θ1 2,

.

2. Proposed Change Point Model

Let X X X nn1 2 3, ( ),……… ≥  be a sequences of observed count data. Let first m 
observations X X Xm1 2, ,………  have come from Particular case of Bur type III 
Distribution with probability mass function as,
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and later n-m observations X Xm n+1, ,……  have come from Particular case of 
Bur type III Distribution function with probability mass function as,
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Where the change point m is unknown parameter 
the likelihood function, given the sample information 

 X X X X X Xm m n= +( , , , .., ),1 2 1……… …  is
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3 Posterior Distribution Functions Using Informative Prior

as in Broemeling et al. [5], we suppose the marginal prior distribution 
of m to be discrete uniform over the set {1, 2, …..n – 1}

 g m
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We consider the ratios ψ1t  and ψ2t  depending on the distribution at time 
t and given as, 
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We also suppose that some information on these ratios is available, and can be 
known in terms of prior mean value µψ1

and µψ2
we suppose the Independent 

log inverse gamma (LIG) priors on ψ1t  and ψ2t with respective means µψ1
 and 

µψ2
 and standard deviation σψ viz.

 
g

b

a
a bit

i
a

i
it
b

it

a

i i

it

i

i
i

1
1 1

1 0 1 2

0 1

ψ ψ ψ

ψ

( )= ( )



 > =

≤ ≤

− −

Γ
In i/ , ,

 (4)

If the prior means µψ1
 and µψ2

 and a common standard deviation σψ  are 
known, then the hyper parameters can be obtain by solving 
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We assume that ψ ψ1 2t t,  and m are priori independent. the joint prior density 
is say, 
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the likelihood function (1) has been reparameterized in term of m and 
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the Joint posterior density of ψ ψ1 2t t m, , and  say, g m Xt t1 1 2ψ ψ, , |( ) , results 
in 
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Marginal Posterior Density of ψ1t  and of ψ2t  are obtained by integrating 
the joint posterior density of ψ1t  and ψ2t , m given in (12) with respect to ψ2t  
and with respect to ψ1t  respectively and summing over m
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Now change of variables, ψit i=1,2  in (16) and (17) respectively, we get 
marginal posterior density of θ1  and θ2

 as,
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the marginal posterior density of change point m is say g m X1 |( )  is obtained 
as 
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Where T1( )m  same as in (15) 

4. Bayes Estimates of Change Point & Other Perameters Under 
Asymmetric Loss Functions

In this section, we derive Bayes estimator of change point m under different 
asymmetric loss function using both prior considerations explained in section 
3. a useful asymmetric loss, the Linex loss function was introduced by Varian 
[9 ] and expressed as,
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Where T1(m)  is same as in (14).
Minimizing expected loss function E dθ θ

1 4 1L ,( )



  and using posterior 

distribution (18) and we get the bayes estimates of θ1 , using Linex loss 
function as
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Minimizing expected loss function Eθ θ
2 4 2L d,( )



  and using posterior 

distribution (19) and we get the bayes estimates of θ2 , using Linex loss 
function as
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General Entropy loss function (GEL), proposed by Calabria and Pulcini [10]
is given by,
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using posterior distributions (20), we get Bayes estimate of change point m 
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minimizing expectation Eθ θ
1 5 1L d,( )






  and using posterior distributions (18), 

we get Bayes estimate of θ1  using General Entropy loss function 
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minimizing expectation Eθ θ
2 5 2
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L d,  and using posterior distributions (19), 

we get Bayes estimate of θ2  using General Entropy loss function as 
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5. Numerical Study

We have generated 30 random observation, the first 15 observations from 
discrete Burr type III distribution with ψ1 0 017t = .  at t=2 and ψ2 0 0085t = .  at 
t= 2 ψ1t  and ψ2t  themselves were random observations from log inverse 
gamma distributions with means µ µψ ψ1 20 017 0 0085= =. , . , and standard 
deviation σψ = 0 01.  respectively, resulting in a b a1 1 20 01 10 0 009= = =. , , .  
and b2 25= . these observations are given in table 1 first row.

We have generated 6 random sample from proposed change point model 
discussed in section-2 with n=30, 50, 50 and m=15, 25, 35, θ

1
=0.47, 0.2,

ψ1 0 017t = . , 0.0013 at t=2 and ψ2 0 0085t = . , 0.0208 at t= 2 and θ
2
= 0.8, 0.5. 

as explained in section 3, ψ1t  and ψ2t  themselves were random observation 
from LIG prior distributions with prior means µψ1

,µψ2
 respectively. these 

observations are given in table 1 .We have calculated posterior means of m, 
θ

1
and θ

2
 selected samples and the results are shown in table 2

Table 1: Generated Samples of proposed change point model

Sample No. n m

Sample actual 

θ1 0 47= . θ2 0 8= . ψ1t ψ2t

1 30 15 0x8, 1x7 0x2, 1x7, 2x4,3x2 0.0170 0.0085

2 50 25 0x13, 1x11, 
2x1

0x4, 1x13 , 
2x6,3x2

3 50 35 0x19, 1x13, 
2x3

0x2, 1x7,2x5, 3x1

θ
1 
= 0.2 θ

2 
= 0.5

4 30 15 0x14, 1x1 0x7, 1x5, 2x3 0.0013 0.0208

5 50 25 0x21,1x4, 0x13, 1x9, 2x3

6 50 35 0x29,1x6 0x8, 1x5, 2x2 
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We also compute the Bayes estimates of change point and θ1 and θ2

using the results given in section 4 for the data given in table 1 and for different 
values of shape parameter q1  and q3 , the results are shown in tables 3 and 4.

table 3 shows that for small values of |q|, q1  = 0.007, 0.12, 0.23 the values 
of the Bayes estimate under a Linex loss function is near by the posterior 
mean. table 3 also shows that, for q1  1.5, 1.2, Bayes estimate are less than 
actual value of m = 15.

Table 2: Bayes Estimate of m, θ1  and θ2 under SEL

Sample 
No. n Bayes Estimates of m 

(Posterior Mean)

Bayes Estimates of θ1 and θ2
(Posterior Mean)

Posterior mean of θ1  Posterior mean of θ2

1 30 15 0.47 0.0085

2 50 25 0.47 0.0085

3 50 35 0.47 0.0085

4 30 15 0.2 0.021

5 50 25 0.2 0.021

6 50 35 0.2 0.021

Table 3: the Bayes estimates using Linex Loss Function for sample 1

θ θ1 20 47 0 8= =. , . q
1 mL

* Posterior mean of θ1
* Posterior mean of θ2

*

Log Inverse Gamma 
Prior

0.007 15 0.47 0.83

0.12 15 0.47 0.82

0.23 15 0.46 0.80

1.2 14 0.44 0.73

1.5 13 0.43 0.72

-1.0 16 0.52 0.84

-2.0 17 0.54 0.83

For q1 = q3 =-1,-2,Bayes estimates are quite large than actual value m = 15. 
It can be seen from table 3 and 4 that if we take the value of shape parameters 
of loss function negative , underestimation can be solved.

table 4 shows that, for small values of |q|, q3  = 0.007, 0.12, 0.23 General 
Entropy loss function, the values of the Bayes estimate under a loss is near by 
the posterior mean. table 4 also shows that, for q3  = 1.5, 1.2, Bayes estimates 
are less than actual value of m = 15.



Pandya, M
Pandya, S

92

6. Sensitivity of Bayes Estimates 

In this paper, we are studying five Bayes estimator of change pont and other 
parameters of theproposed change point model based on particular case of burr 
type III distribution, a part from that we can consider posterior mean is more 
appealing. .table 5 shows that, when prior mean µψ1

0 017= .  actual value of 
ψ µψ1 2

0 006t , .=
,
 and0.0095 (far from the true value ofψ2 0 0085t = . ), it means 

correct choice of prior ψ1t and wrong choice of prior of ψ2t  ,the value of Bayes 
estimator posterior mean of m does not differ.

Table 4: the Bayes estimates using General Entropy Loss Function for sample 
1.

θ θ1 20 47 0 8= =. , . q
3 mE

* θ1E
* θ2E

*

Log Inverse Gamma Prior

0.007 15 0.47 0.81

0.12 15 0.46 0.82

0.23 15 0.45 0.84

1.2 14 0.42 0.74

1.5 13 0.40 0.73

-1.0 15 0.53 0.85

-2.0 17 0.55 0.87

Table 5: Bayes Estimate of m for Sample 1

µψ1t
µψ2 t

m*

0.017 0.006 15

0.017 0.0085 15

0.017 0.0095 15

0.012 0.0085 15

0.017 0.0085 15

0.022 0.0085 15

7. Simulation Study

we have also generated 10,000 different random samples with m=15, 
n=30 θ1 = 0.47, θ ψ ψ2 1 3 1 20 8 0 1 0 017 0 0085= = = = =. , . , . , .q q t t . and 
obtained the frequency distributions of posterior mean, m mL E

* *, , with the 
same prior consideration explained as in numerical study. the result is 
shown in table-8.
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8. Conclusion

We conclude that if we are interested for avoiding overestimation as well as 
underestimation Linex and General Entopy loss function are more appropriate.
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