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Abstract: If P z a zj
n

j
j( )= =Σ 0  is a polynomial of degree n having all its zeros 

in | | ,z k k≤ ≥1, then it is known that

 Max P z
n

k
Max P zz n z| | | || | | ( ) |= =

′ ≥
+1 11

( )  

In this paper we obtain a generalization as well as an improvement of the 
above inequality. Besides this some other results are also obtained.
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1. Introduction and Statement of Results

If P(z) is a polynomial of degree n, then concerning the estimate of | ( ) |′P z , it 
was shown by Turan [8] that if P(z) has all its zeros in |z| ≤ 1, then

 Max P z
n

Max P zz z| | | || | | ( ) |= =
′ ≥1 12
( )  (1)

In (1) equality holds if all the zeros of P(z) lie in |z| = 1.
More generally if the polynomial P(z) has all its zeros in |z| ≤ k ≤ 1, it was 

proved by Malik [7] that the inequality (1) can be replaced by

 Max P z
n

k
Max P zz z| | | || | | ( ) |= =

′ ≥
+1 11

( )  (2)

The case when P(z) has all its zeros in | | ,z k k≤ ≥1 , was setteled by Govil [5], 
who proved
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Theorem A. If P z a zj
n

j
j( )= =Σ 0  is a polynomial of degree n havihg all its 

zeros in |z| ≤ k,k ≥ 1, then

 Max P z
n

k
Max P zz n z| | | || | | ( ) |= =

′ ≥
+1 11

( )  (3)

The result is best possible and equality holds for the polynomial P(z) = zn + kn.
Aziz [1] improved upon the bound in (3) by taking into account the location 

of all the zeros of the polynomial P(z) instead of concerning only the zero of 
largest modulus. More precisely, he proved the following result.

Theorem B. If all the zeros of the polynomial P z z zj
n

j( ) ( )= −=Π 1  of degree 
n lie in |z| ≤ k, k ≥ 1, then

 Max P z
k

k

k z
Max P zz n

jj

n

z| | | || |
| |

| (=
=

=
′ ≥

+ +










∑1
1

1

2

1
( ) )) |  (4)

The result is best possible and equality holds in (4) for P(z) = zn + kn.
Govil [3] also obtained the following improvement of Theorem B.

Theorem C. Let P z a z a z z aj
n

j

j

n j nj

n
( ) ( ),= = − ≠= =∏∑ 0 0

1
, be a polynomial 

of degree n z k j nj j≥ ≤ ≤ ≤2 1,| | , , and let k max k k kn= ≥{ , , , }1 2 1… . Then
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if n > 2 and
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 (6)

In (5) and (6) equality holds for P(z) = zn + kn.
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In this paper we prove the following result which gives an improvement of 
Theorem C, and thus as well of inequality (4).

Theorem D. Let P z a z a z z aj
n

j

j

n j nj

n
( ) ( ),= = − ≠= =∏∑ 0 0

1
 be a polynomial of 

degree n ≥ 2 and P z k j nj j( ) ,| | ,0 0 1≠ ≤ ≤ ≤ , and let k max k k kn= ≥{ , , , }1 2 1… .  
Then

 

Max P z
k

k

k k
Max P zz n

jj

n

z| | | || ( ) | | ( ) |=
=
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+ +
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  (7)

and
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n n
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1

0

1

1

1
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 ′ =| ( ) | .P if n0 2  (8)

where Q z z P
z

n( )=







1
.

The result is best possible and equality holds in (7) and (8) for P(z) 
= zn + kn.

Since 
k

k kj+
≥

1

2
 for 1 ≤ j ≤ n, then above theorem gives in particular.

Corollary 1. If P z a z z an j
n

j n( ) ( ),= − ≠=Π 1 0 , is a polynomial of degree 
n ≥ 2 having all its zeros in |z| ≤ k, k ≥ 1, P(0) ≠ 0, then
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Max P z
n

k
Max P z
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k kz n z
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+
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+1 11
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 (10)

where Q z z P
z

n( )=







1
.

Equality holds in (9) and (10) for P(z) = zn + kn.

It is easy to verify that if k > 1 and n > 2, then 
k

n

k

n

n n−
−

−
−










>

−1 1

2
0

2

, 

hence for polynomials of degree > 1, (9) and (10) together provide a refinement 
of Theorem A.

Now, on applying above theorem to Q z z P
z

n( )=







1
, we obtain the 

following result which gives a generalization as well as an improvement upon 
some well known inequalities.

Corollary 2. If P z a z z an j
n

j n( ) ( ),= − ≠=Π 1 0 , is a polynomial of degree n ≥ 2 
and |z

j
| ≥ k

j
 and let k = min{k

1
, k

2
, ...,k

n
} ≤ 1, then if | ( ) |′P z  and | ( ) |′Q z  attain 

the maximum at the same point on |z| = 1, we have
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k
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and
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where Q z z P
z

n( )=







1
.

The result is best possible for k k j nj = ≤ ≤,1  and equality holds in (11) 
and (12) for P(z) = zn + kn.

Proof of Corollary 2. Since the zeros of P(z) satisfy | | ,z k j nj j≥ ≤ ≤1 , such 

that k min k k kn= { , , , }1 2 … . It follows that the zeros of Q z z P
z

n( )=







1
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1 1
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≤ ≤ ≤, , such that 
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n
}. Applying inequality (7) to the polynomial Q(z) and for the 

case n > 2, we have
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Let Max P z P ez
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| | | ( ) | ( ) |=
′ = ′

1
α , where 0 ≤ α ≤ 2π. Since | ( ) |′P z  and 

| ( ) |′Q z  attains their maximum at the same point on |z| = 1, it follows that 
Max Q z Q ez

i
| | | ( ) | ( ) |=
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α .

We have by Lemma 1(stated in section 2) that
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which proves the desired inequality for n > 2.
The result for n = 2 follows on the same lines as that for n > 2 but instead 

of using (7), we use (8).
As it is easy to see, our Corollary 2 provides a generalization as well as an 

improvement of the following result due to A. Aziz and N.Ahmad [2].

Theorem D. Let P z z zj
n

j( ) ( )= −=Π 1  be a polynomial of degree n which does 

not vanish in |z| < k, where k ≤ 1, and let Q z z P
z

n( )=







1
. If | ( ) |′P z  and 

| ( ) |′Q z  become maximum at the same point on |z| = 1, then

 Max P z
k
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Maxz n
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| | | ( ) |
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+
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1 || | | ( ) | .z P z=1  (15)

The result is best possible and equality holds for the polynomial P(z) = zn + 
kn.

2. Lemmas

For the proof of the theorem, we need the following lemmas.

Lemma 1. If P(z) is a polynomial of degree n, then on |z| = 1

 | ( ) | | ( ) | | ( ) || |
′ + ′ ≤ =P z Q z nMax P zz 1  (16)

where Q z z P
z

n( )=







1
.

This is a special case of a result due to Govil and Rahman [6, Lemma10]. 
Lemma 2. If P(z) is a polynomial of degree n, then for R > 1,

 Max P z R Max P z R R Pz R
n

z
n n

| | | || ( ) | | ( ) | ( ) | ( ) | ,= =
−≤ − − >1

2 0 1for n  (17)

and

 Max P z RMax P z R Pz R z| | | || ( ) | | ( ) | ( ) | ( ) | .= =≤ − − =1 1 0 1for n  (18)
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The above result is due to Frappier, Rahman and Ruscheweyh [3, Theorem2]. 
Lemma 3. If P(z) is a polynomial of degree n ≥ 2 and P( )0 0≠ , then for |z| = 
1 and R ≥ 1,

 

| ( ) ( ) | | ( ) ( ) |

( ) | ( ) |

(| ( ) | |
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z

n( )=







1
.

Proof of Lemma 3. If P(z) is a polynomial of degree n and p( )0 0≠ , then 

Q z z P
z

n( )=







1
 is also a polynomial of degree n. Applying inequality (17) of 

Lemma 2 to the polynomials ′P z( )  and ′Q z( ) , which are of degree (n — 1), 
we obtain for all t≥1and 0 2≤ <θ π ,

 | ( ) | | ( ) | ( ) | ( ) |′ ≤ ′ − − ′ >− − −P te t P e t t P for ni n i n nθ θ1 1 3 0 2  (21)

and
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Adding inequalities (21) and (22), we get for n > 2,
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Using Lemma 1 in above inequality, we get
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for 0 2≤ <θ π  and t≥1.
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Also for each θ θ π,0 2≤ <  and R > 1, we have

 P P e e P te dti i i i
R

(Re ) ( ) ( )θ θ θ θ− = ′∫1
 

and
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On combining inequality (23) with the above inequality, we get for n > 2
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for 0 2≤ <θ π  and R > 1, which is equivalent to the desired result.
The proof of (20) follows on the same lines as the proof of (19), but instead 

of using (17), it uses (18).

Lemma 4.  If P(z) is a polynomial of degree n≥ 2  having all its zeros in 
| | ,z k k≤ ≥1, and
P( )0 0≠ , then
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Proof of Lemma 4. Since P(z) has all its zeros in | | ,z k k≤ ≥1, we write
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Let G(z) = P(kz) and H z z G
z

z P
k

z
n n( )=





=








1
. Applying inequality (19) to 

the polynomial G(z), we get for | |z =1 and k≥1,

 

| ( ) | | ( ) | ( ) | ( ) |

(| ( ) | | ( ) |)

| |G kz H kz k Max G z

G H
k

n
z

n

+ ≤ +

− ′ + ′ −

=1

0 0
1

1

nn

k

n
for n

n

−
−
−











>
−2 1

2
2.

 

Equivalently, for |z| = 1

 | ( ) | | ( ) | ( ) | ( ) |

( | ( ) | | (

| |P k z k P z k Max P z

k P k Q

n n
z k

n

2

1

1

0 0

+ ≤ +

− ′ + ′

=

− )) |) .
k

n

k

n
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n n−
−

−
−











>
−1 1

2
2
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This gives with the help of (26) for |z| = 1

 
2 1

0 0
11

k P z k Max P z

k P k Q
k

n

n n
z k

n
n

| ( ) | ( ) | ( ) |

( | ( ) | | ( ) |)

| |≤ +

− ′ + ′ −

=

− −−
−
−











−k

n

n 2 1

2
,

 

From which inequality (24) follows for n > 2.
The proof of the lemma for n = 2  follows on the same lines as that for n 

> 2, but using inequality (20) instead of inequality (19).
Next we prove the following result which gives an improvement of the 

above lemma by involving the term min | ( ) || |z k P z= as follows.

Lemma 5. If P(z) is a polynomial of degree n≥ 2  having all its zeros in |z| < 
k, k > 1, and P( )0 0≠ , then

 

Max P z
k

k
Max P z

k

k
Mz k

n

n z

n

n| | | || ( ) | | ( ) |= =≥
+

+
−
+











2

1

1

11 iin P z

k P k Q

k

k

n

k

n

z k

n

n

n n

| | | ( ) |

( | ( ) | | ( ) |)

( )

=

−

−

+
′ + ′

+

×
−
−

−
−

0 0

1

1 1

1

2

22
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>for n ,

 (27)

and

 Max P z
k

k
Max P z

k

k
Mz k

n

n z

n

n| | | || ( ) | | ( ) |= =≥
+

+
−
+











2

1

1

11 iin P z

k P k Q

k

k

n
for n

z k

n

n

n

| | | ( ) |

( | ( ) | | ( ) |)

( )

( )
,

=

−

+
′ + ′

+
−

=
0 0

1

1
2

1

 (28)

where Q z z P
z

n( )=







1
 .

Proof of Lemma 5. Since P(z) has all of its zeros in | | ,z k k≤ ≥1, then by 
Rouche’s theorem, the polynomial F(z) = P(z) + λm with | |λ ≤1 , where 
m= =Min P zz k| | | ( ) | , also has all its zeros in | | ,z k k≤ ≥1 . So, on applying 
Lemma 4 for n > 2 to the polynomial F(z), we have

 Max F z
k

k
Max F z

k F k T

z k

n

n z

n

| | | || ( ) | | ( ) |

( | ( ) | | ( ) |
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−

≥
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+
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0 0
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1 ))
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−
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This implies for n > 2
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( | ( ) |
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+ ≥
+

+

+
′ +

λ λ
2

1

0
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0
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1 1

2
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,
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×
−
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n
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n

n

n n

 (29)

If we choose z
0
 so that Max P z P zz| | | ( ) | | ( ) |= =1 0  and also choose argument of 

λ suitably, such that

 Max P z m P z mz| | | ( ) | | ( ) | | | ,= + = +1 0λ λ  

the inequality (29) becomes

 

Max P z m
k

k
P z m

k P k Q

k

k

z k
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−
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Which on simplification gives,
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k
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k

k
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k

z k

n
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n

n| | | || ( ) | | ( ) | | |
( )

( )

( |

= =≥
+

+
−
+

+
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2

1

1

11 z λ

PP k Q

k

k

n
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n

n

n

n n( ) | | ( ) |)

( )
.

0 0

1

1 1

2

1 2+ ′

+
−
−

−
−











− −
 

Finally letting λ→1, we get the desired result for n > 2.
The proof of inequality (28)  follows on the same lines as the proof of 

(27), but instead of inequality(24) of Lemma 4, we use the inequality (25) of 
the same lemma.

3. Proof of the Theorem

The polynomial G z P kz a kz zn jj

n
( ) ( ) ( )= = −

=∏ 1
 has all its zeros in |z| ≤ 1 

and we have
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This implies
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equivalently
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 (30)

Since P'(z) is a polynomial of degree n — 1, it follows by (17) that
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Now using inequality (27) of Lemma 5 in above inequality, we get
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from which the theorem follows for n > 2.
The proof of the theorem for n = 2 follows on the same lines as that of 

n > 2, but instead of using inequalities (17) and(27) of Lemma 2 and Lemma 5 
respectively, we use inequalities (18) and (28) of the respective lemmas.
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