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Abstract: Climate Change is very recent topic at global level for discussion 
for all of us. Phenology is one of the main bio- indicators to track climate 
change effects on ecosystem. The present study is devoted to derive results 
of coherent interest in the field of phenology from Bayesian point of view. 
In this paper we have developed the phenological probability models using 
linear model and constant time series model. The comparison of both the 
models has also been done using the concept of residual sum of square and 
Bayes’ factor.

Keywords: Bayesian Analysis, Linear Model,Constant Time Series Model, 
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1. INTrodUCTIoN

Phenology is a field of research which studies the annual rhythm of biological 
phenomena mainly related to climate. Centuries ago, especially for agricultural 
purposes, phenological knowledge improved the understanding of the variation 
in cycle events. Observations of phenological phases are probably the simplest 
way to track changes in the ecology of species in response to climate change. 
The use of phenological data as bio-indicator for climate variations and global 
change is based on the well known relationship between climate parameters 
and the onset of phenological phases. 

According to [5] phenophases are regarded as an integrating climatological 
measurement responding to many meteorological and environmental factors 
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such as light, photoperiod, temperature, precipitation, humidity, wind and 
others although their particular influence differs.

Phenological models predict time of events in an organism’s development 
to find the information about climate change and its impacts on phenological 
events, it is necessary to develop the statistical tools for analysing the data.
[3] used a Bayesian method to investigate phenological changes. Climate 
change detection employing non-parametric Bayesian function estimation 
is especially useful for studies of climate change impacts in natural systems 
where conditions are prescribed to change. [4] was among the first to explore 
the Bayesian approach in climate change detection. He also pointed out the 
need for the estimation of model uncertainities.[1] used the Bayesian analysis 
for climate change assesment. 

The Bayesian analysis of the time series follows the methodology introduced 
by [2]. [2] proposed the three different models to describe the phenological 
time series data. The constant model, linear model and one change point model. 
The constant model represents the hypothesis of no change with a functional 
behavior constant in time and an associated zero rate of change. The linear 
model assumes a linear change of the observed phenomenon with associated 
constant rate of change. The change point model allows for a time varying rate 
of change and thus is an indicator for non-linear changes. The present paper 
deals with the linear model to analyse the phenological data.

The Bayesian approach to statistical inference offers an extremely useful 
tool for model comparisons called Bayes’ factors which has been proposed by 
[3].  Bayes’ factors can be used to compare models with different blocks of 
covariates, models with different functional forms, and can be used with any 
number of plausible models. As with all quantities in the Bayesian approach, 
Bayes’ factors provide the posterior probability that model M

1
 is the true data 

generating process compared with model M
2
.

2. ProPoSEd LINEAr ModEL USINg NoNINforMATIvE 
PrIor IN PhENoLogy

The linear model assumes a linear change of the observed phenomenon with 
an associated constant rate of change. This model assumes a linear trend in the 
data leaving open the question whether we expect a rise or a fall as a function 
of observation year. The model equation for this case becomes,
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Where x
1
, x

N
 are the first and last year of observations and f

1
, f

N
 design 

functional values that specify a linear trend between x
1
 and x

N 
but are of course 

unknown. Equation (1) suggests going over to matrix notation:

 
 



d Af− =∈  (2)

Here ∈ is the error term, Nis the number of observations and A is the N 
rows and two column matrix. If expected value of {∈

i
} is assumed to be zero 

with known variance as σ2, then according to principle of least square theory 
the likelihood becomes,

 P d x f l I d Af d Af
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The symbol added lin the condition reminds that we are treating 
a linear trend model. Let the prior distribution P f I



/( )  (on 


f  is the 
chosen (weakly informative) to be constant over the range 2γ that is,

 P f I


/( )=
1

2γ
 (4)

The range γ can be estimated from the variance of the data. A 
possible kdimensional generalization of (4) would be 1

2γ











k

. A more 

efficient choice of the prior volume is, however obtained if we replace 
the hypercube by a hyper -sphere Vs (k, γ): 

 Vs k
k

P f k I
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 (5)

A similar non- informative choice is made for P(σ/I).Since σ is a 
scale parameter for the difference |d

i
 – f

i 
 |, we choose a normalizedform of  

JEFFREYS’ prior:

 P( / , I)=σ β
β σ β

σ β
1

2

1 1

ln
, < <  (6)
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From the marginalization theorem, we obtain

 P d x l I dfd P d f x l I( / , , ) . ( , , / , , )




  



= ∫ σ σ  (7)

This equation is an identity. The integral in (7) canbe expanded using the 
product rule:

 P d x l I P f I P I P d x f I d f d( / , , ) ( / ). ( / ). ( / , , , )




 
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Where R is residue of the proposed model. 
Hence from (1) and (7) we get,
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The matrix Q and residue R are unknown. These quantities follows 
from a comparison of coefficients in 



f  of the two equivalent forms of   
φ  in (9) and hence
Q = ATA

Therefore, residual sum of square of the model (10) is given by,

 R = − −
   

d d d A A A A dT T T T( ) 1  (11)

The expression for the residue R can be simplified considerably if we 
employ singular value decomposition on the matrix A.

 Let us Assume A U Vi i i i
T= Σ λ

 

 (12)
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yields for matrix Q:

 Q A A VU U V V VT
i k i k i i

T
K k

T
k k K k

T= = ∑ ∑ = ∑λλ λ
   

2  (13)

The last equality follows from the fact that 


Ui{ }   and the 


Vi{ }  each 
form an orthogonal normalized vector system. Accordingly we obtain 
from (12) and (13) as

 Det Q( )= ∏k kλ
2  (14)

 AQ A U UT
k K k

T− = ∑1
 

 (15)

 R d U U dT
K K k

T= − ∑{ }


 


1   (16)

Now if we take constant time series model, we have

  d f ii i− =∈ ∀ =1 2 3, , . N  (17)

Using the above rules we get
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To check the reliability between the constant time series model and linear 
model we derive the Bayes’ factor in the favour of linear model as given by,
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Using equation (5) theBayes’ factor becomes
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The residual sum of square of the model(17) can be derived as,

 E d fi ii

N

i

N
= ∈ = −( )

== ∑∑ 2 2

11
 

For the minimisation of E, we shall differentiate E with respect to f. 
Hence, ∂

∂
= ⇒ = =

=∑E

f
f

N
d dii

N
0

1
1

. Therefore, the residual sum 

of square of the proposed constant time series model is given by 

Table 1

Years Average temperature of 
the years

Production of 
rice (in tones)

2000 26.26 21.13

2001 26.32 20.576

2002 25.47 20.022

2003 26.1 19.468

2004 24.16 18.914

2005 24.5 18.360

2006 25.112 18.935

2007 25.87 19.510

2008 25.85 20.085

2009 24.9 20.660
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R d d N dii

N
= −( ) = ∆

=∑ 1

2
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where, ∆ = −( )=∑d
N

d dii

N2

1

21  .

3. NUMErICAL ILLUSTrATIoN 

To get the residual sum of square and Bayes’ factor of linear and constant 
time series model,we use the following table of 10 years average temperature 
data obtained from Narendra Deva University of Agriculture and Technology, 
Faizabad (India) as :
The temperature data is,
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Hence residual sum of square of the linear model is

R d I A A A A dT T= − ( )
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

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−T 1

4 364696.

and P( / , , ) .




d x l I = 0 000052 . 
Similarly, we have for constant time series model the residual sum of 

square R=5.16 and P( / , , ) .




d x C I = 0 0000012 .
The Bayes’ factor in favour of linear model is
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CoNCLUSIoN

The comparision of the of the Constant Time Series model and Linear model in 
a tabular form is given below in terms of Residual Sum of Squares, Efficiency 
and Bayes’ Factors:

According to above table 2, we observe that using the Linear Model 
we can do better prediction of those phenological events which satisfiy the 
conditions of Linear Model. We can also check the accuracy of the linear 
model by calculating the residual sum of square. Since residual sum of square 
of the Linear Model is less than the residual sum of square of the Constant 
Time Series Model, the efficiency of Linear Model is more than the Constant 
Time Series Model and as the Bayes’ factor in favour of Linear Model is more 
than unity, therefore Linear Model gives a better fit of the data than Constant 
Time Series Model.
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