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Abstract: This paper intends to consider the interrelationships between 
mathematics and music in the context of changes in the conception of music 
during the renaissance. Western music developed from relying on a cosmological-
mathematical-speculative model, in which attention was focused on the rational 
activity of speculation, to a mathematical-empirical model, in which the main 
emphasis lay on the quality of the sound itself and on its laws and effects on 
people. Musical concepts such as temperament, division of the tone, changes in 
the foundations of theoretical music, mathematical-structural changes in theories 
of ratio and consequently the emergence of the idea of irrationals and number 
continuum in theoretical music contexts will be considered here in order to 
understand the substratum of such a change in the conception of western music.

Keywords: maths/music, renaissance, aritmetization of ratios, numbers as 
continuum, irrationals in theoretical music

1. BACKgRound

In the experiment of the monochord, Pythagoras is credited with having 
established the correspondence between musical intervals and ratios of a 
string, discovering that certain intervals could be produced by dividing the 
string in simple ratios a:b such that b represented the whole string whereas a 
represented a part of the string. In particular, the intervals of the octave, fifth 
and fourth were produced by simple ratios 1:2; 2:3 and 3:4, respectively. 
These intervals were called perfect consonances, and the Pythagorean 
consonances consisted strictly of the intervals whose underlying ratios were 
formed only by elements of the Tetraktys, the series of numbers 1,2,3,4, 
whose sum results in 10 [118,4].
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In the context of Pythagoras’ experiment, if now one considers – on the 
one hand, that a fourth, which is produced by 3:4, composed to a fifth, which is 
produced by 2:3, results musically in an octave, which is produced by 1:2; and 
on the other hand, that such an operation thus corresponds mathematically to 
taking 3:4 of the string followed by taking 2:3 of the remainder, which means 
taking (2:3)(3:4) of the string, i.e. (1:2) of the string – Pythagoras’ experiment 
seems to tell us more than the very general point that mathematical ratios 
underlie musical intervals. More specifically, it tells us that the compounding 
ratios underlie the composition of musical intervals, and possibly due to this 
link, even that composition of ratios in a Euclidean fashion is handled in this 
way.

In Greece, Pythagoras’ experiment represents the beginning of a science 
oriented toward mathematics. It shows how a mathematical order is inherent in 
the physical space, thus corroborating such an order as the origin and foundation 
of harmony. Pythagoras’ discovery concerning the monochord, both in Greece 
and after the Hellenistic age, casts light on a large number of discussions 
about musical theory that have ratios as their basis. This feature shaped the 
conception of western music with a cosmological-mathematical-speculative 
understanding until the renaissance, when a mathematical-empirical one 
began to emerge.

among the factors involved in such a change in the conception of 
western music, the advent of polyphony played an important part. It implied 
the need of non-integers in the ratios underlying musical intervals, and thus 
a structural change in the numerical system over which the musical scales 
were developed. Such a change culminated in the systematization of the 
equal temperament. In this case, most of the concords are made slightly 
smaller or bigger in the tuning of the scale, so that none are left distasteful 
for the sake of execution of polyphonic music. In the context of theoretical 
music, such a structural change brought about the need for the division 
of the tone and in particular the need for the division of a ratio in equal 
parts – a division that would bring out the limitations and stiffness of a 
Pythagorean musical model that involved the search for a perfect system 
of intonation based on ratios between commensurable magnitudes. These 
changes would also eventually bring into question the rigid Pythagorean 
distinction between consonance and dissonance, defined by the first four 
numbers.

at the end of the fifteenth century and beginning of the sixteenth, in 
mathematical contexts, changes in the conception of ratio brought about the 
strengthening of the arithmetical theory of ratios, contributing in a wider sense 
to the arithmetization of the theories of ratio and at the same time to the use 
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of geometry instead of Pythagorean arithmetic as the instrument for solving 
structural problems in theoretical music.

1.1 The construction of the Pythagorean scale and its implications

boethius’ conception of music had great influence in medieval music 
theory, which gave emphasis to mathematical-metaphysical-cosmological 
speculation. In the Middle ages, ars musica was part of the Quadrivium, the 
mathematical sciences of the seven liberal arts. Music was a pure science. 
Practice and the quotidian had no place in the system of the seven liberal 
arts.

Only in the late Middle ages, the reality concerning perceptible proprieties 
of music once again developed: music became aimed at the empirical 
experiences and at practice. according to Dickreiter, this development was 
caused in the thirteenth century by the influence of the arabic musical theory 
of al-Farabi, mediated by Gundilissalinus [174,10]. From this period on, the 
empirical conception of music gained growing importance, reaching its peak 
at the end of the fifteenth century.

In the context of such developments, the limitations and stiffness of the 
Pythagorean musical model became obvious, namely, the strict distinction 
between dissonance and consonance – defined by the first four natural 
numbers – and the composition of intervals determined by ratios of these 
numbers. The main source of the music theory of the early Pythagoreans 
was the fact that the ratios 1:2, 2:3 and 3:4 determine the perfect Greek 
consonances of the octave, fifth and fourth, respectively, and also, as a 
consequence, that the composition of contiguous musical intervals is 
determined by the compounding ratios of the respective intervals using the 
classical Greek method mentioned above in the discussion of its application 
by Euclid.

The Pythagoreans established a mathematical construction of the 
musical scale making use of these three Greek consonances employing the 
compounding of ratios. For instance, in order to compound the fifth with the 
fifth, that is, to compound 2:3 with 2:3, it is required to find a:b and b:c such 
that a:b is proportional to the first 2:3, and b:c is proportional to the second 
2:3; a condition which in the present case is met, for instance, by the ratios 
4:6 for a:b and 6:9 for b:c, both of them being proportional to 2:3, resulting 
in the compound ratio 4:9. accordingly, to decompound an octave 1:2 from 
4:9 means to find a: b and c: b so that a:b is proportional to the first 1:2 and 
c:b is proportional to the second 4:9. This condition is met, for instance, by 
the ratios 9:18 for a:b and 8:18 for c:d, resulting in the ratio 8:9, which is a 
second.
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In order to build the Pythagorean scale, let us consider the notes produced 
by a cycle of octaves and by a cycle of fifths, meaning the notes produced by 
the ratios 1:2, 1:4, 1:8 etc and 2:3, 4:9, 8:27 etc, respectively. There is no loss of 
generality if one considers do as the initial note. Now one tries to determine each 
note produced by the cycle of fifths relative to the note in the cycle of the octaves 
that is immediately below. For instance, after two fifths one produces a note 
generated by the ratio 4:9. In this case, the octave which is immediately below 
is produced by the ratio 1:2, therefore, the note produced in the Pythagorean 
scale is generated by the ratio 8:9, which is a re. The next note generated by the 
cycle of fifths is produced by the ratio 8:27. The octave immediately below is 
still produced by the ratio 1:2, so the note produced in the Pythagorean scale 
is generated by the ratio 16:27, which is a la. The next note of the cycle of 
fifths is caused by the ratio 16:81. In this case, the octave which is immediately 
below is induced by the ratio 1:4, so the note produced in the Pythagorean scale 
is generated by the ratio 64:81, which is a mi, and so on. Such a procedure 
generates the Pythagorean scale from cycles of fifths and octaves.

This process can be obtained equivalently if one decompounds an octave 
whenever the note produced by the cycles of fifths goes beyond an octave. Since 
the fourth is an octave decompounded by a fifth or an octave decomposing a 
fifth, it is enough to use octaves and fifths to generate the Pythagorean scale. 
Thus, starting for instance from c, if one compounds a fifth with a fifth, which 
mathematically means to compound 2:3 with 2:3, one obtains a composed D, 
which corresponds to the ratio 4:9; after dropping an octave, which corresponds 
mathematically to decompound from it 1:2, the result is the note D with the 
ratio 8:9.

 If now one compounds a second with a fifth, which means 
mathematically to compound 8:9 with 2:3, one obtain the note a corresponding 
to the ratio 16:27, and so on, obtaining the following diatonic scale, called the 
Pythagorean scale:

c  D E F G a b c

1:1 8:9 64:81 3:4 2:3 16:27 128:243 1:2

continuing this process for the construction of the scale it provides for F# in 
the superior octave the ratio (128:243)(2:3), namely 256:729, thus 512:729 for 
F# in this octave, and so on, according to the table presented in the following.

The columns in the table 1 presented below show the ratios and notes, 
respectively, generated by compounding fifths followed by decompounding an 
octave whenever the generated note is higher than the octave, or mathematically, 
whenever the ratio is smaller than 1:2, so that one always keeps the notes in the 
same octave, or mathematically one keeps the ratios between 1:1 and 1:2.
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In table 2, the lines of table 1 are reordered according to the sizes of the 
ratios, thus, producing the chromatic Pythagorean scale. The last column 

ratio  note

1:1 c

2:3 G

8:9 D

16:27 a

64:81 E

128:243 b

512:729 F#

2048:2187 c#

4096:6561 G#

16384:19683 D#

32768:59049 a#

131072:177147 F

262144:531441 c

Table 1: The construction of the Pythagorean scale

expresses the ratio expressed as a decimal underlying the interval between two 
consecutive notes showing two types of half tones in the Pythagorean scale.

Now one obtains the following chromatic scale:

c c# D D# E F F# G G# a a# b c 

1:1 2048:2187 8:9 16384:19683 64:81 131072:177147 512:729 2:3 4096:6561 16:27 32768:59049 128:243 262144:531441

 The chromatic Pythagorean scale is:
 The notes F and c found in the table presented before, 131072:177147 

= 0,73990527641 and 262144:531441 = 0,49327018427, respectively are 
slightly different from 3:4 and 1:2, which are those of the Pythagorean scale. as 
mentioned before, a do (c) was considered the initial note, so this result means 
that the fourth and the octave obtained by the afore mentioned process are not 
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exactly the same obtained in the discovery with the monochord, attributed to 
Pythagoras, of the numerical ratios corresponding to the main intervals of the 
musical scale.

One can put it down to the fact that the afore mentioned cycles of the 
octaves and of fifths don’t meet, as it will be shown later and that the best 
approximation for this meeting occurs with 7 octaves and 12 fifths. So it is 
plausible that the ratios determined by the fourth and by the octave in the 
Pythagorean scale result from the experiment of the monochord, namely, from 
the musical perception that such ratios produce these intervals, they were the 
perfect consonances in the context of Greek music and which were capable of 
being produced by ratios composed by small numbers, being easier to relate to 
the intervals using only the ear. It is confirmed by the fact that the notes F and 

note  ratio  distance

c 1:1

c# 2048:2187 0.936442615

D 8:9 0.94921875

D# 16384:19683 0.936442615

E 64:81 0.94921875

F 131072:177147 0.936442615

F# 512:729 0.94921875

G 2:3 0.94921875

G# 4096:6561 0.936442615

a 16:27 0.94921875

a# 32768:59049 0.936442615

b 128:243 0.94921875

c 262144:531441 0.936442615

Table 2: The construction of the chromatic Pythagorean scale

C C# d d# E F F# g g# A A# B c 

1:1 2048:2187 8:9 16384:19683 64:81 3:4 512:729 2:3 4096:6561 16:27 32768:59049 128:243 1:2
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c are the last ones – considering do as the first note – produced by the cycles of 
fifths if one considers the approximation mentioned before of 7 octaves with 12 
fifths, namely c, G, D, a, E, b, F#, c#, G#, D#, a#, “F”, “C”. another factor 
somewhat related to the latter argument is that the scale was supposed to be 
built inside an octave – produced by 1:2 in the experiment of the monochord 
–, since the notes whose differences are an integer number of octaves show a 
semantic similarity, manifested for instance when a child tries to repeat a song 
sung by an adult, what the child does with a difference of octaves since he/she 
cannot reach the original notes emitted by such an adult. So the adjustment 
of the notes produced by the cycles of fifths to the first octave are made 
naturally using the octave obtained in the experiment of the monochord, that 
is, produced by the ratio 1:2. using this fact, the fourth 3:4 could be considered 
from this experiment or if the cycle is generated by decompounding fifths and 
compounding an octave whenever the note produced falls outside of the initial 
octave, a fourth 3:4 could be produced by decompounding an fifth from the 
initial note followed by the composition of an octave, which will result in 1:1 
decompounded by 2:3, which is 3:2 and this decompounded by 1:2 which is 
3:4.

as mentioned previously, there is no loss of generality if one considers do 
as the first note in the sense that this process would result in the same dynamics 
if it had begun with another note. For instance, if one begins with F an octave 
lower – instead of c –, which corresponds to the ratio 3:4 decompounded by 
1:2, that is, 3:2, then after compounding it with a fifth, generated by 2:3, it will 
result in 1:1, that is c, from which the process initiated. and the continuation 
of the process will happen as in the previously mentioned scale. If one begins 
with F (3:2), the cycle will finish with the F found in the table (131072:177147), 
whereas if the process begins with c (1:1), the cycle will finish in the second c 
found in the table (262144:531441). In the first case, the ratio between the last 
F and the one octave higher F, which is 3:4; is (131072x4):(177147x3), which 
is (524288:531441) = 0,98654037. In the second case, the ratio between the 
last c and the c one octave higher, which is 1:2; is (262144x2):(531441), that is 
also (524288:531441) = 0,98654037. This ratio is not 1:1, but (524288:531441) 
= 0,98654037, and therefore neither cycles meet, as one would expect when 
one thinks of the same process on a keyboard. Nevertheless, 524288:531441 
= 0,98654037 is almost 1:1 and is called the Pythagorean comma, as will be 
shown in the following.

anachronistically, the semitone between F and F# is produced by (512:729)/
(3:4), that is 2048:2187, approximately 0.9364; whereas the semitone between 
G and F# is produced by (2:3)/(512:729), which is 1458:1536, approximately 
0.9492. according to the table, one obtains a scale in which the tone is not 
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equally divided, but almost equally, as is verifiable in the last column of the 
table, where each tone in such a scale is divided into two different, albeit quasi-
equal, semitones.

In a general sense, such a process leads to an asymmetric scale, namely a 
scale in which not all equal intervals are produced by the same ratio. This is 
the price paid for constructing a scale by a completely pure method, namely 
based only on intervals produced by ratios of the Tetraktys. Such a compromise 
between symmetry and purity in the construction of a scale will be shuddered 
at with the advent of the equal temperament, when a conceptual change has 
occurred in the mathematical basis of the scale, now based on irrational 
numbers, as will be shown in the following.

2. TEMPERAMEnT

The Pythagorean scale was based on the Tetraktys. This scale was predominant 
up until the late Middle ages. J. Murray barbour presents the just intonation 
of ramos de Pareja from 1492 as the earliest proposal for replacing the 
Pythagorean system (barbour 1953). During the thirteenth to the fifteenth 
centuries, the advancement of the motet contributed to the development of 
polyphony. In medieval polyphony only perfect intervals were regarded as 
true consonances. The perfect intervals or consonances were the octave, the 
fifth, the fourth and the unison or any compound of one of these intervals. 
The beginning of the Ars Nova in the fourteenth century brought about a 
change in musical attention from melody to counterpoint and harmony, as a 
consequence the introduction of imperfect consonances of thirds and sixths 
in the fifteenth century, when theorists began to accept such intervals as 
consonances, establishing a distinction between concordatia perfecta and 
concordatia imperfecta. contrasting with the expression “perfect consonance”, 
“imperfect consonance” refers to major and minor thirds and sixths and their 
compounds (tenth, thirteenth etc). In the late Middle ages, serious alternatives 
to Pythagorean tuning were first considered by musical theorists [445,7] in 
order to answer the need of a new musical language provided by polyphony.
anachronistically speaking, this means that, supposing both these both cycles 
meet, there would be m and n integers such that (2:3)n = (1:2)m, that is, 3n 
= 2m+n, which is impossible, since the left term is odd and the right is even. 
This implicit contradiction and maybe a defense-mechanism of nature against 
order caused the emergence of different solutions throughout history. The 
Pythagoreans would consider a point where there is a good approximation 
between the cycles mentioned above. In fact after repeating such a process 
12 times, the 12 musical notes generated by such a process are those of the 
chromatic scale and the result is very close to 7 full octaves – if n = 12 and 
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m = 7, then 12 fifths exceed by a bit 7 octaves: the difference is precisely the 
Pythagorean comma. It is possible to visualize if we express the Pythagorean 
comma mathematically. Such a difference is given thus by (2:3)12/(1:2)7, which 
is 219/312 = 524288: 531441, which is the Pythagorean comma. This interval 
is tolerable in homophonic contexts but great enough to cause problems in 
harmonic intervals in polyphonic contexts, for instance, if a fifth lacking a 
Pythagorean comma is executed with several musical lines simultaneously; 
and to unleash the need for a truly structural change in the mathematical 
structure underlying the standard and persistent medieval system of intonation 
predominant since antiquity. This means that in the Pythagorean intonation, 
the tuning of the scale comprises eleven pure fifths and an impure fifth – made 
of a pure one minus the Pythagorean comma – called the wolf’s fifth. This was 
a way of adjusting the cycles of fifths and the cycles of octaves, in an attempt 
to maintain purity.

Temperaments are necessary mainly because natural intervals do not 
adjust themselves in other natural intervals. For example, three major natural 
thirds do not comprise an octave for nearly 1/5 of a whole tone; four minor 
natural thirds exceed an octave by a bit; the cycles of natural fifths do not meet 
the cycles of octaves as was shown above; a major second obtained from the 
subtraction of a minor natural third from a natural fourth is smaller than that 
obtained from the subtraction of a natural fourth from a natural fifth, etc.

The oldest temperament known in western music was the Pythagorean 
with the majority of natural fifths. The alternatives to the Pythagorean tuning 
consisted in the adjustment of the cycles mentioned above in other ways, which 
would inevitably and eventually abstain from purity in favor of similarity in 
the intervals for the systematization of the equal temperament. The appearance 
of such alternatives to the Pythagorean tuning seems to have occurred for the 
first time in the late Middle ages. The fourteenth century, for example, already 
witnessed attempts to establish other temperaments besides the Pythagorean 
and even what one could call a proposal of equal temperament. according 
to Ellsworth, it appears as one of the five treatises on music theory, found 
in an anonymous fourteenth-century manuscript, dated in Paris, 12 January, 
1375, for what appears to be a highly practical system, based upon equal 
temperament [445,3].

unequal temperaments, for instance with natural thirds, flourished in the 
late Middle ages and the renaissance. Such proposals were surpassed by 
equal temperament inasmuch as music became more chromatic and extended 
to all tonalities.

The equal temperament consists in equal distribution, as will be shown in 
the following, the Pythagorean comma among the twelve fifths of the cycles. 
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The equal temperament consists of adjusting twelve fifths inside of seven 
octaves. Starting from a length l

0
, the composition of seven octaves is produced 

by (1/2)7l
0 
= 0.0078125…whereas the composition of twelve fifths is produced 

by (2/3)7 l
0
 = 0.0077073…, which is higher since the length is shorter, as one 

can see in the spiral presented in the diagram of Figure 1. So, one must find a 
smaller fifth, so that the composition of twelve such fifths fits the composition 
of seven octaves. Supposing the ratio r underlies each of these fifths, this 
procedure would translate mathematically to inserting geometrically twelve 
lengths between l

0
 and (1/2)7l

0
, thus resulting in the ratio r = (1/2)7/12 underlying 

the fifth, since l
0
.r12 = (1/2)7l

0
. Since (1/2)7/12 is approximately 0.66742 > 

0.66666… = (2:3), which is the pure fifth, the tempered fifth is, as expected, a 
little bit smaller than the Pythagorean fifth. From this, one can deduce that the 
tempered fourth is an octave subtracted from a fifth which is mathematically 
(1:2)/(1:2)7/12 = (1:2)5/12 and so on.

Since any interval is an integer number of semitones, if one ensures that 
all semitones are equal, namely produced by equal ratios, given any equal 
intervals, they will be produced by equal ratios. Thus the equal temperament 
equivalently consists of adjusting twelve equal semitones inside of an octave. 
Supposing the ratio p underlies each semitone, such a procedure translates 
mathematically to inserting geometrically eleven lengths between l0 and (1/2)
l0, thus resulting in the ratio p = (1/2)1/12 underlying the half tone, since l0.p

12 
= (1/2)l0. The equal temperament demanded symmetry, and its mathematical 
systematization implies the use of incommensurable magnitudes as the 
mathematical foundation, directly associated with musical intervals. Symmetry 
here means scales in which all the fifths underlie the same mathematical 
ratio, the same happening for any other interval. Such a use conflicts with 
the characteristic philosophical doctrine of the Pythagorean school, which 
believed in the importance of numbers –- in this case natural numbers – as a 
guide to the interpretation of the world.

2.1 Equal division of the tone

The equal division of the tone played an important part in the historical process 
that led to the emergence of equal temperament. Mathematically, the equal 
division of the tone 8:9 provides incommensurable ratios underlying musical 
intervals. The equal division of the tone (8:9) mathematically means to find x 
so that 8:x = x:9; anachronistically speaking, that result in irrational numbers, 
inconceivable in the Pythagorean musical system.

attempts to divide the tone were already made in antiquity, for instance 
by aristoxenus (fourth century b.c.). In contrast with the Pythagoreans, who 
defended the position that musical intervals could properly be measured and 
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expressed only as mathematical ratios, aristoxenus rejected this position, 
asserting instead that the ear was the sole criterion of musical phenomena 
[592,24]. In preferring geometry to arithmetic in solving problems involving 
relations between musical pitches, aristoxenus also sustained against 
the Pythagoreans, the possibility of dividing the tone into two equal parts, 
conceiving musical intervals – and indirectly ratios – as one-dimensional and 
continuous magnitudes, making their division possible in this way. This idea 
provoked a large number of reactions expressed for instance in the Sectio 
Canonis [125,5], which was in antiquity attributed to Euclid and much later in 
the De institutione musica [88,8] of boethius in the early Middle ages, which 
gave birth to a strong Pythagorean tradition in theoretical music throughout the 
Middle ages. Following the Platonic-Pythagorean tradition, a great number 
of medieval musical theorists sustained the impossibility of the equal division 
of the tone, which would mathematically lead to incommensurable ratios 
underlying musical intervals. Gradually, the need to carry out the temperament 
gave birth to different attempts to divide the tone.

Goldman suggests that Nicholas cusanus (1401-1464) was the first to 
assert in Idiota de Mente that the musical half-tone is derived by geometric 
division of the whole-tone, and hence would be defined by an irrational 
number [308,4] (Goldman, 1989, 308). as a consequence, cusanus would 
be the first to formulate a concept that set the foundation for the equal 
temperament proposed in the work of the High renaissance music theorists 
Faber Stapulensis (1455-1537) and Franchino Gafurius (1451-1524), published 
half a century later [308,4]. Nevertheless, in the byzantine tradition Michael 
Psellus (1018-1078) suggested in his Liber de quatuor mathematicis scientijs, 
arithmetica, musica, geometria, [et] astronomia [22] a geometrical division 
of the tone, whose underlying conception implies an understanding of ratio 
as a continuous magnitude. also concerning the division of the tone before 
cusanus, Marchettus of Padua (1274 ? –?) proposed, in his Lucidarium in Arte 
Musice Planae written in 1317/1318, the division of the tone into five equal 
parts [193,3], an innovation of extraordinary interest which made Marchettus 
the first in the Latin tradition to propose such a division, but without any 
mathematical approach. at the end of the fifteenth century and the beginning 
of the sixteenth century, Erasmus Horicius, one of the German humanists 
gifted in musical matters, wrote his Musica [fo. 66v,11], where he suggested a 
geometric division of the whole tone [160,16]. Erasmus stated that any part of 
any superparticular ratio can be obtained, in particular the half of 8:9, which 
corresponds to equally divide the whole tone [159,16]. Theoretically based on 
many geometrical propositions and, unusually, modeled on Euclidean style, 
his Musica dealt with ratio as a continuous quantity, announcing perhaps 
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what would emerge as a truly geometric tradition in the treatment of ratios 
in theoretical music contexts during the sixteenth century. Such a change 
from an arithmetical to a geometrical basis in the theory of music represents 
a meaningful structural transformation in the basis of theoretical music and in 
the concept of ratio seen as a continuum.

2.2 The mathematical basis of Renaissance theoretical music: from 
arithmetic to geometry

The period from the end of the fifteenth century to the end of the sixteenth century 
witnessed more intense structural changes in the conceptions underlying ratios 
and proportions in the contexts of theoretical music. With the need of equal 
temperament which brings together the need of the division of the whole tone 
and consequently structural changes in the conceptions of ratios, treatments 
with such concepts in theoretical music ceased to be a subject exclusively of 
arithmetic and became a subject of geometry.
In this context, Erasmus Horicius contributed immensely to the introduction of 
geometry as an instrument for solving structural problems in theoretical music. 
Notwithstanding the announcements of the need for geometry in theoretical 
music by previous authors, Erasmus could be considered the first in the 
renaissance to apply Euclidean geometry extensively in his Musica [14] for 
the resolution of structural problems in theoretical music. relying mainly on 
books V and VI of Euclid, Horicius used geometry in different ways to solve 
musical problems, applying it to intervals, in contradiction to the boethian 
arithmetical tradition. In his Musica, he used the denominatio terminology 
taken from campanus’s Latin translation of the Elements, a procedure which 
contributed to the emergence of an arithmetical theory of ratio in the context 
of theoretical music. Making use of geometrical resources hitherto unusual 
in musical contexts, Erasmus showed that the intervals of the fifth (3:2) and 
the whole tone could be divided by a proportional mean, namely by finding 
a magnitude b between a and c so that a:b is proportional to b:c considering 
the whole tone mathematically expressed by a:b, although such resources 
involved potentially irrational numbers. Procedures like those in musical 
contexts intensified the conflicts associated with the Pythagorean tradition 
concerning theoretical music, according to which only whole numbers and 
ratios of whole numbers could serve as the basis for theoretical music, whether 
through a stiff distinction between consonance and dissonance defined by the 
first four numbers or through the search for a perfect system of intonation 
based on commensurable ratios.

Erasmus represents an intensification in the conceptual change undergone 
by theoretical music at this time, and his contribution is relevant to the research 
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on mathematics and music at the end of the fifteenth century and beginning 
of the sixteenth century at the university of Paris, inasmuch as one can find 
the use of geometry in the solution of musical problems, for instance in the 
geometric division of superparticular intervals (produced by an epimoric ratio, 
i.e. a ratio of the type m+1:m) presented in Faber Stapulensis’s Elementalia 
musica, first published in 1494. This work had influence in the Spanish tradition 
of theoretical music in the sixteenth century, with authors like Pedro ciruelo 
(1470-1548) and Juan bermudo (1510-1565), who also presented respectively 
in the works Cursus quatuor mathematicarum artium liberalium, published in 
alcalá de Henares in 1516 [11] and Declaración de Instrumentos, published 
in 1555 in Osuna [25] the same division of the tone with the geometrical mean 
presented by Faber Stapulensis. In the Iberian Peninsula, the tendency to use 
geometry occurred also in Salinas’s De Musica published in Salamanca in 
1577, that contains a geometrical systematization for the equal Temperament, 
which makes extensive use of Euclid’s Elements.

Such a tendency spread also to the German and Italian production in 
theoretical music. The German mathematician Heinrich Schreiber (1492-
1525), for instance, published in the appendix Arithmetica applicirt oder 
gezogen auff die edel kunst Musica of his “ayn new kunstlich buech…” of 
1521 [9] a geometric division of the tone into two equal parts making, use 
of the Euclidean method for finding the geometric mean. He also operated 
with ratios with a very arithmetical structure, for instance, anachronistically 
compounding them as one multiplies fractions.

In the Italian tradition the tendency to use geometry was also strong. a 
representative example of such a tendency is Gioseffo Zarlino, a leading Italian 
theorist and composer in the sixteenth century. One of the most important works 
in the history of music theory, Zarlino’s Le istitutioni harmoniche (1558), 
represents an important attempt to unite speculative theory with the practice of 
composition on the grounds that “music considered in its ultimate perfection 
contains these two parts so closely joined that one cannot be separated from 
the other [646,17]. The tendencies for reconciling theory and practice also 
manifested themselves in this period in the context of structural problems 
underlying theoretical music. Such a reconciliation seemed to be incompatible 
with a Pythagorean perspective on theoretical music, in which there was no 
place for geometry, an essential tool for modeling a new language claimed by 
practical music. This tendency also shows the consideration of number as a 
continuum in the treatment of theoretical music problems.

In this context, it is worthwhile to mention Zarlino’s Sopplimenti musicali 
(1588), in which the Italian theorist demonstrated much greater penetration into 
the ancient authors, particularly aristoxenus and Ptolemy, than in Le istitutioni 
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harmoniche [648,17]. In spite of the still existing authority of Pythagoreanism in 
the context of theoretical music in the sixteenth century, Zarlino’s Sopplimenti 
musicali already gave evidence of the tension between speculative theory and 
practice in the contexts of structural problems in theoretical music, inasmuch 
as it presented geometrical solutions for the equal temperament but was also 
based on Pythagorean foundations.

Zarlino proposed a theoretical accomplishment for the equal temperament 
displayed on the lute, which is presented in chapter 30 of book 4 of the 
third volume of Zarlino’s Sopplimenti musicali [208,25]. Entitled Come si 
possa dirittamente diuidere la Diapason in Dodici parti ò Semituoni equali 
& proportionali, this chapter presented the first theoretical possibility for 
the equal temperament as the temperament of the lute, made by tones and 
semitones, equally made in the division of the diapason (octave), in twelve 
proportional parts, distributed between the keys of the lute.

It is worthwhile to mention the assertion made in the last page of the 
Sopplimenti musicali. at the end of chapter 32 of book 8 of the third volume, 
Zarlino wrote “... che la Musica più tosto sia sottoposta alla Geometria, che 
alla Arithmetica …” [330,25], which means that music should be subordinate to 
geometry rather than to arithmetic. Zarlino published the Sopplimenti musicali 
just before his death in February of 1590. This passage in his last work seems 
to be the first time that Zarlino assumed explicitly that geometry was not just a 
theoretical tool together with arithmetic for dealing with problems in theoretical 
music, but rather constituted a better tool for this task then arithmetic.

ConClusIons

The sixteenth century saw, in distinction to the Pythagorean tradition, the 
introduction of geometry as a tool not only to solve the problem of division of 
the tone but also to solve theoretical problems related to the systematization 
of the temperament as well as the emergence of the idea of irrationality in 
theoretical music contexts, symbolizing a substantial change in the foundations 
of theoretical music.
The intensification of the skepticism concerning Pythagorean arithmetical 
dogmatism in music at the end of the sixteenth century and the beginning of the 
seventeenth resulted in interest concerning the physical determinants of musical 
concepts. Vincenzo Galilei played an important part in this process inasmuch 
as he raised the paradox, under a Pythagorean perspective, that many ratios 
could underlie a given musical interval. also, in 1638, based on the fact that 
sound had the nature of vibration, Galileo Galilei established that the direct and 
immediate explanation for musical intervals was neither the length or thickness 
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of the string, nor the tension to which it was subject, but rather the ratio of the 
number of vibrations and impacts of waves of air that directly hit the ear (cohen, 
1984, 90). This explanation would serve as the basis for the coincidence theory 
of consonance that makes the old question concerning the cause of the human 
sensation of beauty and pleasure in hearing the consonant intervals undergo a 
meaningful change in which the explanation for our sense experience turned 
from a speculative-mathematical ratio to an empirical-physical phenomenon.

Such facts are representative, in a wider sense, of a greater change 
undergone by the foundations of theoretical music throughout this period, 
which gradually ceased to be based on an arithmetical dogmatism and assumed 
instead experimental principles as its basis, a change which conferred upon 
music the character of experimental science.

In the seventeenth century, the concept of harmony in the sense of 
harmony of the world and harmony of the celestial bodies, became suspect for 
rationalists and exact scientists. In spite of the new conceptions of theoretical 
music, Pythagorean ideas were still present in such contexts even in the 
seventeenth century, when such ideas seem in other respects to have been 
less present and less prominent. a representative example of such a presence 
can be found in book V of Kepler’s Harmonices mundi (1619), where the 
Platonic-Pythagorean cosmos received a magnificent restatement, before 
being withdrawn. Postulating the old Pythagorean doctrine of the music of 
the spheres for the first time polyphonically rather than as a Greek scale, and 
simultaneously worrying about empirical tests for his hypotheses, Kepler finds 
harmonious ratios expressible in musical terms in the relationship between the 
speeds of revolution of the planets and pitches.

The ancient and medieval conceptions of the music of the spheres were 
much broader and more speculative, including not only the harmony in the 
course of the planets but also in the course of time, in the combination of 
elements, etc. Such an approach in this Pythagorean doctrine culminated in 
the seventeenth century with cosmic constructions such as the monochord 
mundi of robert Fludd. This procedure possibly represents a last evidence of 
the Pythagorean speculative tradition in music, rescuing the old doctrine of the 
music of the spheres; on the other hand, it also equips the old doctrine with 
a mathematical-empirical conception under which, in a wider sense, western 
music had been approached since the late Middle ages.
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