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Boussinesq’s equation is one-dimensional nonlinear partial differential equation which represents 
the infiltration phenomenon. This equation is frequently used to study the infiltration phenomenon in 
unsaturated porous medium. Infiltration is the process in which the groundwater of the water reservoir 
has entered in the unsaturated soil through vertical permeable wall. An approximate analytical solution 
of nonlinear partial differential equation is presented by homotopy analysis method. The convergence 
of homotopy analysis solution is discussed by choosing proper value of convergence control parameter. 
The solution represents the height of free surface of infiltrated water.
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1. Introduction
The fluid flow in porous media has great importance in 
various fields of engineering and science. In particular, 
the groundwater flow is very important part of fluid 
mechanics, hydrology, water resources engineering, 
irrigation engineering, etc. [15, 19, 20, 22, 23]. In this 
work, we examined the fluid flow problem in groundwater 
infiltration. Infiltration is the process in which water on the 
ground surface enters into unsaturated soils and pass into 
rocks through cracks and interstices. If the storage for the 
additional water had been available then the infiltration 
process can continue for a long time. The availability of 
additional water into the soil is dependent on the porosity 
of the soil. Once water has infiltrated into the soil it may 
stay in soil until it gradually evaporated, absorbed by plant 
roots and later transpired. The rate of infiltration process is 
dependent on different factors like as texture and structure 
of soil, storage capacity of soil, the depth of water reservoirs, 
the amount of plant over the region, etc.

Many researchers have been discussed various problems 
of groundwater infiltration like as Troch et al. [13] have 
derived an expression for mean water table height on the basis 

of hydraulic groundwater theory by means of Boussinesq 
equation, Govindaraju and Koelliker [3] have developed the 
expression for the flow rate from the stream to the aquifer, 
Hogarth et al. [4] have discussed an analytical approach for 
Boussinesq equation with constant and time dependent 
boundary conditions, Hogarth et al. [5] have obtained the 
approximate analytical solution of Boussinesq equation 
which is accurate solution by comparison with the numerical 
solution when the boundary conditions is a power to time, 
Wojnar [14] has discussed the Boussinesq equation for flow 
in the aquifer with time dependent porosity, Moutsopoulos 
[7] has discussed Boussinesq equation with nonlinear robin
boundary condition, Basha [1] has discussed the traveling
wave solution of the groundwater flow in horizontal aquifers.

The aim of current work is to obtain the solution 
of Boussinesq equation for infiltration phenomenon. 
The mathematical form of the infiltration phenomenon 
gives the nonlinear partial differential equation in the 
form of Boussinesq equation. This equation is solved 
using homotopy analysis method. The BVPh package for 
nonlinear equations is employed to interpret numerically 
and graphically solution. Liao [24] has employed the 
homotopy analysis method to solve nonlinear equations. 

https://doi.org/10.15415/mjis.2018.62004
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It has been successfully employed to solve many nonlinear 
equations. The homotopy analysis solution is strongly 
dependent on convergence control parameter and its proper 
value chosen from the valid region of c0 . The valid region 
of c0  is obtained from the c0 -curve. The line segment 
almost parallel to horizontal line in c0 -curve gives us the 
admissible range of c0 .  

2. Mathematical formulation
Let volume V of the fluid in an aquifer bounded by the 
surface ∂V . The mass of fluid flowing in unit time through 
an element ndA  of the surface is ρu ndA⋅ . The mass 
conservation law is expressed by the equation

-
∂
∂

= ⋅
∂
∫∫t P dV u ndA

VV

ρ ρ  (1)

where P is the porosity of the medium, ρ  is the density of 
the fluid, u is the velocity of the fluid and n is the outward 
normal to the surface element. We assume that the fluid 
is incompressible then ρ  is constant and by divergence 
theorem (1) becomes

-
∂
∂

= ∇⋅∫∫t PdV udV
VV

.  (2)

Let us assume the plane Oxy  be situated at the horizontal 
bottom of an aquifer and the z-axis be vertical up. Let V be 
the volume of the irregular cylinder, z = 0 is lower surface 
and the free surface z h x y t= ( ), ,  is the upper surface. Then

-
∂
∂

= ∇⋅∫ ∫∫∫t PdzdS udzdS
h h

SS 0 0

 (3)

or

∂
∂

+ ∇⋅










=∫ ∫∫ t

Pdz udz dS
h h

S 0 0

0.  (4)

The integrand under dS
S
∫  must be zero because the 

equation hold for any surface S. So

∂
∂

=- ∇⋅∫ ∫t
Pdz udz

h h

0 0

.  (5)

Now we assume that the flow in unsaturated zone for which 
the pressure p0  at the free surface z h x y t= ( ), ,  is constant. 
Thus the vertical component of the momentum equation 
gives

-
∂
∂
- =

P
z

gρ 0.  (6)

Since the pressure p0  at free surface z h x y t= ( ), ,  is 
constant. Then we get

p p g h z= + -( )0 ρ  (7)

it means that the vertical velocity component is neglected 
and the flow is plane.

The velocity u of the fluid obeys Darcy’s law which 
relates with the pressure gradient [15, 16, 20]

u
K

p=- ∇
δ

 (8)

where K is the permeability of porous medium, δ  is the 
viscosity of water. Using (7) in (8) we get

u
gK h

x
u

gK h
y

ux y z=-
∂
∂

=-
∂
∂

=
ρ
δ

ρ
δ

, , .0  (9)

So,

u
gK

h=- ∇
ρ
δ

 (10)

where ∇h  is the two dimensional gradient of h.
Since the flow is considered in the plane then u is 

independent of z and the porosity P of the porous medium 
is constant. Thus (5) gives us

∂( )
∂

=- ∇⋅
Ph
t

h u.  (11)

Combine (10) and (11) we get

P
h
t

gK
h h

∂
∂
= ∇
ρ
δ

2  (12)

where K is the constant permeability of the porous medium.
We neglected squares of the slope angles, we get the 
approximation

h h h h h h h∇ =∇ ∇( )- ∇( ) ≈∇ ∇( )2 2 .  (13)

Thus (12) write as
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P
h
t

gK
h h

∂
∂
= ∇ ∇( )
ρ
δ

 (14)

we get the Boussinesq equation

P
h
t

gK
h

∂
∂
= ∇ ( )ρ
δ2

2 2
 (15)

where ∇2  is the two dimensional Laplacian operator.
Assume that the one dimensional case for infiltration 

phenomenon. Let us consider the groundwater reservoir 
with impervious bottom and surrounding of the reservoir 
is unsaturated homogeneous soil. The maximum height of 
reservoir is considered hm . Figure 1 shows that a vertical 
cross-section of the reservoir surrounded by unsaturated 
homogeneous soil. The height of free surface of infiltrated 
water is zero when x l= , the dotted portion below the 
curve is considered as saturated soil by infiltrated water 
and the above curve is the region of unsaturated soil. The 
bottom part of region is assumed as impervious bed, so 
water can’t move in the downward direction. Here the 
problem is discussed for infiltration phenomenon in which 
the groundwater of reservoir enters into unsaturated soil 
through vertical permeable wall (see figure 1). For the one 
dimensional problem we ignore the transversal variable y 
and the region occupies by the infiltrated water described 
as x z R z h x t, : ,( )∈ ≤ ≤ ( ){ }2 0 . We assume that the flow 
has an almost horizontal speed.
Thus, the one dimensional Boussinesq equation becomes

∂
∂
=

∂
∂

h
t

gK
P

h
x

ρ
δ2

2 2

2 .  (16)

Using dimensionless variables

Η= = =
h
l

X
x
l

T
gKt

lP
, ,

ρ
δ

(16) becomes

∂
∂
=
∂
∂

+
∂
∂










Η
Η
Η Η

T X X

2

2

2

.  (17)

This one dimensional nonlinear partial differential equation 
is the governing equation for infiltration phenomenon. The 
homotopy analysis method is applied to solve this equation 
with the following boundary conditions. The solution 
H(X,T) of equation gives us the height of the free surface at 
a length X and time T. According to physical concepts of the 
problem we used the boundary conditions are as

Η Η0 1
2

1, , , .T h T h
T

em m( )= ( )= -







-  (18)

3. Homotopy Analysis Solution
Let us assume the nonlinear differential equation 
ℵ ( )



 =φ X T q, ; 0 , where ℵ  is a nonlinear operator. Let us 

define the nonlinear operator according to (17) is as

ℵ ( )



 = ( )

∂ ( )
∂

+
∂ ( )
∂










φ φ
φ

φ

X T q X T q
X T q
X

X T q
X

, ; , ;
, ;

, ;

2

2




-
∂ ( )
∂

2
φ X T q

T
, ;  (19)

Figure 1. The infiltration phenomenon.
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where ϕ X T q, ;( )  is an unknown function of spatial variable 
X and temporal variable T for 0 1≤ ≤q .

The zero order deformation equation is of the form [24]

1 0 0-( ) ( )- ( )



 = ℵ ( )



q L X T q X T c q X T qφ φ, ; , , ;Η  (20)

where q ∈[ ]0 1,  the homotopy parameter, L the linear 
operator, Η0 X T,( )  the initial approximation of the 
original solution H(X,T), c0 the non-zero convergence 
control parameter.

Assume that the linear operator of the form 

L X T q
X T q

X
φ

φ
, ;

, ;
( )[ ]

( )
=
∂

∂

2

2  and the initial approximation 

of Η X T,( )  is of the form Η0

2

2
X T h

TX
em

X, .( )= -









-

Thus when q = 0, (20) becomes φ X T X T, ; ,0 0( )= ( )Η  

and when q =1,  we get ϕ X T X T, ; ,1( )= ( )Η . Hence 

as q  varies from 0 to 1, φ X T q, ;( )   continuously varies 
from initial approximation Η0 X T,( )  to the exact solution 
Η X T,( ) . The series solution is assumed in the form of

φ X T q X T X T qm
m

m

, ; , ,( )= ( )+ ( )
=

∞

∑Η Η0
1

 (21)

where

Ηm

m

m

q

X T
m

X T q
q

,
!

, ;
.( )=

∂ ( )
∂

=

1

0

φ
 (22)

Consider the linear operator, the initial approximation and 
the convergence control parameter in such a way that the 
series of φ X T q, ;( )  converges at q =1.  Thus

Η Η ΗX T X T X Tm
m

, , , .( )= ( )+ ( )
=

∞

∑0
1

 (23)

Define Η Η Η Ηn nX T X T X T X T, , , , ,..., ,( )= ( ) ( ) ( ){ }
� ����������

0 1 . 
Differentiating (20) m  times w.r.t. q  and dividing them 

by m !   and then putting q = 0,  we have the mth -order 
deformation equation

L X T X T cm m m m mΗ Η Η, ,( )- ( )  = ℜ ( )- -χ 1 0 1

� �����
 (24)

subject to the boundary conditions

Η Ηm mT T m0 0 1 0 1, , , ,( )= ( )= ≥  (25)
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Η Η
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∂
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T
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and

χm

if m
if m=

≤
>






0 1
1 1

,
, .

 (27)

So the special solution of (24) is of the form

Η Η Ηm m m m mX T X T c dXdX, , .( )= ( )+ ℜ ( )- -∫∫χ 1 0 1

� �����
 

Thus the general solution (24) is of the form

Η Η

Η
m m m

m m

X T X T
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, ,( )= ( )
+ ℜ ( ) + +

-

-∫∫
χ 1
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� �����  (28)

where C1  and C2  are determined by boundary conditions 
(25). From (25) and (28), we now successively obtain
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In this way we get Η Η2 3X T X T, , , ,...( ) ( ) . The solution 
of (17) is as

Η Η Η ΗX T X T X T X T, , , ,( )= ( )+ ( )+ ( )+0 1 2 
 (31)

which represents the height of free surface of infiltrated 
water at X for a given time T.

4. Result and Discussion
The solution contains the convergence control parameter  c0
and the proper value of the convergence control parameter
c0  gives us the convergent homotopy series solution. The 

proper value of c0  is chosen from the c0 -curve [6, 8, 9, 
10, 11, 12, 17, 21, 24]. The line segment almost parallel to 
horizontal axis in c0 -curve gives us the admissible range of 
c0 . We plotted the c0 -curves with the help of Mathematica 
BVPh package for homotopy analysis method [18]. Figure 
2-3 show the c0 -curves of ΗXX 0 0,( ) , ΗXX 0 0 8, .( )  
and ΗXX 0 1,( ) for 10th and 15th order of approximation, 
respectively. The admissible range of c0  is - ≤ ≤-1 3 0 40. .c  
from c0 -curves.

Table 1 shows the values of Η ΗXX XX0 0 0 0 8, , , .( ) ( )  
and ΗXX 0 1,( )  for different values of c0  and for different 
order of approximations using homotopy analysis solution.

Figure 2. The c0-curves of ΗXX 0 0,( )  (DotDashed line), ΗXX 0 0 8, .( ) (Thick line) and ΗXX 0 1,( ) (Dashed line) for hm = 0.98

Figure 3. The c0 -curves of ΗXX 0 0,( )  (DotDashed line),  ΗXX 0 0 8, .( ) (Thick line) and  ΗXX 0 1,( ) (Dashed line) for hm = 0.98.
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Table 1. Approximations of ΗXX 0 0,( ) , ΗXX 0 0 8, .( )  and ΗXX 0 1,( )  for different values of c0 and for different order of approximations 
using homotopy analysis solution.

ΗXX 0 0,( ) ΗXX 0 0 8, .( ) ΗXX 0 1,( )
10th order 15th order 10th order 15th order 10th order 15th order

c0 0 8=- . -0.168942 -0.168869 -0.220129 -0.219842 -0.211775 -0.211551

c0 0 9=- . -0.168819 -0.168879 -0.219852 -0.219866 -0.211537 -0.211572

c0 1=- -0.168820 -0.168876 -0.219750 -0.219877 -0.211466 -0.211578

c0 1 1=- . -0.168894 -0.168880 -0.219807 -0.219829 -0.211533 -0.211545

c0 1 2=- . -0.168912 -0.168877 -0.219896 -0.219909 -0.211609 -0.211600

Using the c0 -curve, we choose the proper value of c0 1=-  
from admissible range of c0 . Table 2 indicates the numerical 
values of Η X T,( )  for 10th and 15th order of approximation 
of homotopy series solution. The graphical interpretation of 

the solution represents the height of free surface at length  X 
for a time T. Figure 4 shows the graph of the height of free 
surface Η X T,( )  vs X  for a fixed time T = 0 1 0 2 1. , . ,..., .  
The graph of Η X T,( )  vs X and T is shown in figure 5.

Table 2. Numerical values of the height of infiltrated groundwater H(X, T).

T Approximation X = 0 1. X = 0 2. X = 0 3. X = 0 4. X = 0 5. X = 0 6. X = 0 7. X = 0 8. X = 0 9. X =1

0.1 10th order 0.93767 0.89326 0.84635 0.79639 0.74258 0.68378 0.61850 0.54433 0.45615 0.34213

15th order 0.93767 0.89325 0.84633 0.79633 0.74252 0.68382 0.61864 0.54433 0.45603 0.34213

0.2 10th order 0.93695 0.89175 0.84397 0.79304 0.73812 0.67801 0.61112 0.53491 0.44369 0.32373

15th order 0.93695 0.89175 0.84395 0.79298 0.73805 0.67806 0.61130 0.53491 0.44354 0.32373

0.3 10th order 0.93627 0.89031 0.84170 0.78984 0.73385 0.67247 0.60403 0.52584 0.43159 0.30534

15th order 0.93626 0.89031 0.84168 0.78978 0.73379 0.67254 0.60425 0.52582 0.43138 0.30534

0.4 10th order 0.93562 0.88895 0.83954 0.78680 0.72978 0.66717 0.59723 0.51712 0.41985 0.28695

15th order 0.93561 0.88894 0.83952 0.78673 0.72972 0.66727 0.59750 0.51707 0.41959 0.28695

0.5 10th order 0.93500 0.88765 0.83750 0.78391 0.72591 0.66212 0.59072 0.50878 0.40853 0.26855

15th order 0.93500 0.88764 0.83747 0.78383 0.72584 0.66225 0.59106 0.50869 0.40819 0.26855

0.6 10th order 0.93441 0.88643 0.83556 0.78117 0.72225 0.65731 0.58452 0.50083 0.39767 0.25016

15th order 0.93441 0.88642 0.83553 0.78109 0.72218 0.65750 0.58494 0.50069 0.39722 0.25016

0.7 10th order 0.93387 0.88527 0.83373 0.77859 0.71879 0.65277 0.57864 0.49330 0.38729 0.23176

15th order 0.93386 0.88526 0.83370 0.77850 0.71871 0.65300 0.57916 0.49308 0.38672 0.23176

0.8 10th order 0.93335 0.88419 0.83202 0.77617 0.71553 0.64848 0.57308 0.48621 0.37746 0.21337

15th order 0.93335 0.88418 0.83198 0.77607 0.71546 0.64877 0.57371 0.48588 0.37672 0.21337

0.9 10th order 0.93287 0.88318 0.83042 0.77391 0.71249 0.64445 0.56785 0.47958 0.36822 0.19498

15th order 0.93287 0.88317 0.83038 0.77380 0.71242 0.64482 0.56862 0.47911 0.36728 0.19497

1 10th order 0.93242 0.88224 0.82893 0.77181 0.70966 0.64068 0.56295 0.47345 0.35964 0.17658

15th order 0.93242 0.88223 0.82889 0.77169 0.70959 0.64115 0.56389 0.47279 0.35843 0.17658
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Figure 4. The graph of the height of infiltrated groundwater H(X,T) v/s length X for fixed time T = 0.1 (uppermost graph),0.2,...,1 (lowermost 
graph) for hm = 0.98.

Figure 5. The graph of the height of infiltrated groundwater H(X, T) v/s X and T for hm = 0.98.

Table 3: Difference between 15th order and 10th order approximation of H(X, T).

T
15th  order of appro. of  -10th  order appro. of Η ΗX T X T, ,( ) ( ))  

X = 0 1. X = 0 2. X = 0 3. X = 0 4. X = 0 5. X = 0 6. X = 0 7. X = 0 8. X = 0 9. X =1

0.1 -2.0811E-06 -5.6006E-06 -1.9778E-05 -5.3297E-05 -5.9018E-05 3.5795E-05 1.4286E-04 9.3097E-06 -1.1770E-04 3.8568E-08

0.2 -2.2808E-06 -6.0730E-06 -2.1647E-05 -5.8219E-05 -6.1785E-05 5.3768E-05 1.7946E-04 -2.2971E-06 -1.5546E-04 -3.4624E-07

0.3 -2.2401E-06 -6.4685E-06 -2.3392E-05 -6.3701E-05 -6.4585E-05 7.6369E-05 2.2372E-04 -2.0635E-05 -2.0450E-04 2.7049E-08

0.4 -2.4973E-06 -7.2382E-06 -2.5791E-05 -6.9799E-05 -6.7105E-05 1.0417E-04 2.7761E-04 -4.8023E-05 -2.6678E-04 -5.9482E-07

0.5 -2.8283E-06 -7.7823E-06 -2.8170E-05 -7.6489E-05 -6.9601E-05 1.3886E-04 3.4192E-04 -8.8526E-05 -3.4708E-04 -2.6285E-07

0.6 -3.1310E-06 -8.0655E-06 -3.0407E-05 -8.3826E-05 -7.0837E-05 1.8183E-04 4.2106E-04 -1.4450E-04 -4.4807E-04 7.9133E-08

0.7 -3.4175E-06 -8.8059E-06 -3.2993E-05 -9.1978E-05 -7.3097E-05 2.3376E-04 5.1631E-04 -2.2257E-04 -5.7639E-04 -8.2077E-07

0.8 -3.2422E-06 -9.3882E-06 -3.5428E-05 -1.0099E-04 -7.4488E-05 2.9797E-04 6.3157E-04 -3.2762E-04 -7.4042E-04 -7.0717E-07

0.9 -2.9964E-06 -9.4567E-06 -3.8050E-05 -1.1047E-04 -7.5582E-05 3.7676E-04 7.7115E-04 -4.6969E-04 -9.4501E-04 -1.1996E-06

1 -2.8044E-06 -9.9191E-06 -4.1949E-05 -1.2155E-04 -7.4969E-05 4.7115E-04 9.3911E-04 -6.5811E-04 -1.2037E-03 -1.3547E-07
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The difference of 15th order approximation of solution 
Η X T,( )  and 10th order approximation of solution 
Η X T,( )  are mentioned in table 3 for different values of  
X and T.

Conclusions 
The Boussinesq equation is discussed for infiltration 
phenomenon in unsaturated soil. The homotopy analysis 
solution of the governing equation is obtained with boundary 
condition. The convergence of homotopy analysis solution is 
discussed by c0-curve. The solution represents the height of 
free surface which is discussed graphically and numerically.
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