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Abstract In this paper we show how to reduce the study of nondegenerate local 
Goldie (-1, 1) rings to the strongly prime case, via the notions of uniform ideals 
and essential subdirect product. also we construct the maximal left quotient 
ring of (-1, 1) ring that is a left quotient ring of itself. We follow Utumi where 
a maximal left quotient ring is constructed as a direct limit of partially defined 
homomorphism from left ideal of R to R. 
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1. IntRoductIon

Goldie Theorem is certainly one of the fundamental results of the theory of 
associative rings. Today this Theorem is usually formulated as follows: A ring 
R is a classical left order in a semisimple (equivalently, semiprime artinian) 
ring Q if and only if R is semiprime, left nonsingular, and does not contain 
infinite direct sums of left ideals. Moreover, R is prime if and only if Q is 
simple. Whereas the theory of rings of quotients has its origins between 1930 
and 1940 in the works of Ore and Osano on the construction of the total ring of 
fractions. In that decade Ore proved that a necessary and sufficient condition 
for a ring R to have a (left) classical ring of quotients is that for all regular 
element a ∈ R and b ∈ R there exist a regular c ∈ R and d ∈ R such that cb = 
da (left Ore condition). This Ore conditions were also used by author in [9] to 
study the properties of ascending chain conditions in (-1, 1) rings.

Fountain and Gould (1990), based on ideas from semigroup theory, 
introduced a notion of order in a ring, which need not have an identity, and in 
the following years gave a Goldie – like characterization of two – sided orders in 
semiprime rings with descending chain condition on principal one – sided ideals 
(equivalently, coinciding with their socles). anh and Marki (1991) extended this 
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result to one – sided orders, and in (1994) the same authors developed a general 
theory of Fountain – Gould left quotient rings (we point out that the maximal 
left quotient ring plays a fundamental role in this work).

It is natural to ask whether similar notions (and results) can be obtained for 
(-1, 1) rings. In this work we show how to reduce the study of nondegenerate 
local Goldie (-1, 1) rings to the strongly prime case, via the notions of uniform 
ideal and essential subdirect product. We shall also introduce as a tool, the 
notion of general left quotient rings and related properties of a ring to any of 
its general rings of quotients. We construct the maximal left quotient ring of 
(-1, 1) ring that is a left quotient ring of itself and prove that this is a (-1, 1) 
ring when A(R) is semiprime or 2-torsion free. We finish giving explicitly the 
maximal left quotient ring of particular (-1, 1) rings.

2. PRELIMInARIEs 

The following three basic subsets can be considered in a nonassociative ring R: 
the nucleus N(R), the commutative center C(R) and the center Z(R) defined by 
N(R) = {n ∈ R / (n, R, R) = (R, n, R) = (R, R, n) = 0}, also known as associative 
center C(R) = {c ∈ R / [c, R] = 0}and Z(R) = N(R) ∩ C(R) where [x, y] = xy – yx 
denotes the commutators of two elements x, y ∈ R and (x, y, z) = (xy)z – x(yz) 
is the associator of the three elements x, y, z of R.

 The defining axioms of (-1, 1) ring R are (x, y, y) = 0 (2.1)

 and S(x, y, z) = 0 for every x, y, z ∈ R (2.2)

where after linearization of (2.1) we obtain (x, y, z) + (x, z, y) = 0 and S(x, y, z) 
is nothing but (x, y, z) + (y, z, x) + (z, x, y). In fact there are many results where 
we can see a (-1, 1) ring becoming an alternative ring. The standard reference 
for alternative rings is [12].

From now on, for a ring R, R1 will denote its unitization, that is, R if 
the ring is unital, or R ×   with product (x, m)(y, n) := (xy + nx + my, 
mn) if R has no unity.

The nucleus and the associator ideal of a (-1, 1) ring will be very important 
notions in this theory. Given a ring R, every ideal contained in the nucleus 
of R will be called a nuclear ideal. The largest nuclear ideal of R will be the 
associative nucleus denoted by U(R) where U = U(R) = {x ∈ R / xR1 ⊆ N(R)} = 
{x ∈ R / R1x ⊆ N(R)}. By A(R) we will mean the associator ideal, i.e., the ideal 
of R generated by the set (R, R, R) of all associators.

If X is a nonempty set of a (-1, 1) ring R, then the left annihilator of X is 
defined to be the set lan(X) = {a ∈ R/ ax = 0 for all x ∈ X}, written lanR(X) 
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when it is necessary to emphasize the dependence on R. Similarly the right 
annihilator of R ran(X) = ranR(X), is defined by ran(X) = {a ∈ R/ xa = 0 for 
all x ∈ X }.

We also write ann(X) = annR(X) = lan(X) ∩ ran(X) to denote the annihilator 
of X. It is easily seen that if X is the left (right) ideal of R, then ran(X) (lan(X)) 
is a right (left) ideal of R, and if X is an ideal, then lan(X), ran(X) and ann(X) 
are ideals of R. 

For every subset X of R we have the third annihilator property :

lan(ran(lan(X))) = lan(X) and ran(lan(ran(X))) = ran(X).

a ring without nonzero trivial ideals (i.e., ideals with zero multiplication) 
is called semiprime. By [8] every semiprime alternative ring does not contain 
nonzero trivial left (right) ideals and hence so is in the case of (-1, 1) rings. an 
element a of a (-1, 1) ring R is called an absolute zero divisor if aRa = (0). The 
ring R is nondegenerate (or strongly semiprime) if R does not contain nonzero 
absolute zero divisors.

Proposition 2.1: Let I be an ideal of a semiprime (-1, 1) ring R and denote π : 
R → R  the canionical projection of R onto R  = R/ ann(I). Then

   (i) lan(I) = ran(I) = ann(I) is a two sided ideal of R.
  (ii) I ∩ ann(I) = 0.
 (iii) R  is a semiprime (-1, 1) ring.
 (iv) I is an essential ideal of R if and only if ann(I) = 0.
  (v) I = π(I) is an essential ideal of R . 
  If R is nondegenerate, then

 (vi) ann(I) = {x ∈ R / xIx = 0}.
(vii) R  is a nondegenerate (-1, 1) ring.

Proof: (i) Let x ∈ Lan(I). We will see that x ∈ ran(I).
For every r ∈ R and y ∈ I, 
(a) r(yx) = -(r, y, x) + (ry)x
 = (y, x, r) + (x, r, y) + (ry)x. (S(x, y, z) = 0 i.e., from (2.2))
 = – (y, r, x) – (x, y, r) + (ry)x from (2.1)
 = (ry)x.

(b) (rx)y = (r, x, y) + r(xy)
 = – (x, y, r) – (y, r, x) from (2.2)
 = – (x, y, r) = 0 from (2.1) 

From (a), Ix is a left ideal of R and from (b), (Ix)2 = 0. Since R is semiprime, 
Ix = 0.
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Similarly we prove ran(I) ⊆ lan(I)
(ii) We have (I ∩ ann(I))2 ⊆ ann(I) = 0, and by semiprimeness of R we obtain 
I ∩ ann(I) = 0.
(iii) Let J = π(J) be an ideal of R , with J an ideal of R, such that ( J )2 = 0 . 
Since J2 ⊆ ann(I), (I ∩ J)3 ⊆ J2I + IJ2 ⊆ ann(I) = 0 and semiprimeness of 
R implies I ∩ J = 0. In consequence IJ = 0 = JI, which implies J  = 0  .
(iv) If I is an essential ideal of R, then from (ii) I ∩ ann(I) = 0 implies ann(I) = 
0. Conversely, suppose ann(I) = 0. If J is an ideal of R satisfying J ∩ I = 0 then, 
since IJ ⊆ I ∩ J = 0. By (i), J ⊆ ann(I) = 0 and hence I must be essential.

(v) By (iii), R  is semiprime, so by (i), lan I ann I
R R
( ) ( )= . Hence and by 

(iv) it is enough to prove that lan I
R
( )= 0 . Let r be in lan I

R
( ) . Then rI ⊆ 

I ∩ ann(I), which is zero by (iii). And by (i), r= 0 .
(vi) By [4] the Jordan annihilator of I (see note after Lemma 1.3), annJ(I), 
which coincides with the set {x ∈ R / xIx = 0}, is an ideal of R such that annJ(I) 
∩ I = 0. This implies (annJ(I) ∩ I)2 = 0 since R is semiprime, annJ(I) I = 0. 
Hence annJ(I) ⊆ lan(I) = (by (i)) ann(I). The inclusion ann(I) ⊆ annJ(I) is 
obvious.
(vii) Assume that there exist a  ∈ R such that a b a  = 0  for every b ∈ 
R. In particular, for every b ∈ I we have aba ∈ I ∩ ann(I), which is zero 
by (iii), and therefore a ∈ ann(I), by (v). ♦

Every (-1, 1) ring R with Z
l
(R) = 0 and such that every element has finite 

left Goldie dimension will be dimension will be called a left local goldie (-1, 
1)ring. If additionally R has finite left (global) Goldie dimensions then R will 
be called left goldie (-1, 1)ring right and two-sided corresponding notions are 
defined dually.

Following [12], given a ring R we call every ideal contained in the 
associative center N(R) a nuclear ideals, and the largest nuclear ideal the 
associative nucleus of the ring R. We denote the letter by U = U(R). This ideal 
of R can be characterized as follows. (See [12] [proposition 8.9]).
U = {x ∈ R / xR1 ⊆ N(R)} = {x ∈ R / R1x ⊆ N(R)}.

For a left ideal L of a (-1, 1) ring R, denote by L
∨

the largest ideal of R 
contained in L. ♦
Lemma 2.1: let L be a nonzero left ideal of a semiprime (-1, 1) ring R. 
Then:

N(l) = l (i) ∩ N(R)
Z(l) = l (ii) ∩ Z(R)
U(l) = l (iii) ∩ U(R).

Proof : (i) It is sufficient to prove the assertion in the case when the ring 
R is prime. Let i, j ∈ L; a ∈ R, b ∈ R*.Then by the linearized Moufang 
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identity b(i, j, a) = - j(i, b, a) + (i, j, ab) + (i, b, aj) ∈ L whence (L, L, A) 
⊆ (L : A*) = L

∨

. Now if L = (0), then (L, L, A) = (0), which by Lemma 5 
in [12] implies L ⊆ N(R). It is easy to see that in this case the assertion 
of the Theorem is true.

 But if L ≠ (0) then Lemma 8.10 in [12] T(L) ≠ 0. For any element n 
∈ N(L) we have (n, L, L) = (0), whence by Lemma 9.1 in [12] (n, R, R) 
⊆ Ann rT(L). Since the algebra R is prime, we obtain Ann rT(L) = (0), and 
consequently n ∈ N(R). Thus the inclusion N(L) = L ∩ N(R) is proved. 
The reverse inclusion is obvious.
(ii) Let z ∈ Z(L). Then by (i) z ∈ N(R). Let i ∈ L, a, b ∈ R. Then by the 
semi Jacobi identity which is true in any arbitrary ring we see that i[z, 
a] = [z, ia] – [z, i]a = 0.
Furthermore, if we assume that our ring satisfies (w, [z, a], y) = ([z, a], y, 
w) = (y, w, [z, a]) then [z, a] ∈ N(R) and therefore (bi)[z, a] = b(i[z, a]) = 
0. We see that [z, a] ∈ Ann r(L). In views of the fact that the element [z, 
a] belongs to the ideal L and its right annihilators it also belongs to their 
intersection, which is a trivial ideal in R. Since R is semiprime [z, a] = 0, 
which means that z ∈ Z(R). We have proved that Z(L) ⊆ L ∩ Z(R). This 
proves (ii) since the reverse inclusion is obvious.
(iii) Consider u ∈ U(L), x, y ∈ L and r ∈ R. By (i), u ∈ N(R) and since 
U(L) is an ideal of L, xu ∈ U(L) ⊆ N(L) = L ∩ N(R) by (i). By applying 
the teichmullar identity, [R, N(L)] ⊆ N(L) and the above said fact we see 
that (ru, x, y) = (r, xu, y) = 0. This implies R1u ⊆ N(L) = L ∩ N(R) by (i) 
and by Proposition 2.1, u ∈ U(R). The reverse inclusion is obvious. ♦
Lemma 2.2: For every ideal I of a semiprime (-1, 1) ring R we have; Zl(I) = I 
∩ Zl(R).
Proof : Assume I ≠ 0. Take 0 ≠ x ∈ Zl(I). By condition (iii) in Lemma 
2.1 x ∈ U(R). Now we see that lanR(x) is an essential left ideal of R. Let 
L be a nonzero left ideal of R. If Lx = 0 then L ⊆ lanR(x). If Lx ≠ 0 then 
IxL would be a nonzero left ideal of I (otherwise IxL = 0 would imply 
LxLxLx ⊆ IxLx = 0, which is not possible by the semiprime of R) and 0 ≠ 
IxL ∩ lanI(x) ⊆ L ∩ lanR(x).

Conversely, let 0 ≠ x ∈ I ∩ Zl(R). By Lemma 2.1 (iii), x ∈ U(I). Now 
we prove that lanI(x) is an essential left ideal of I. Let L be a nonzero left 
ideal of I. If Lx = 0, then L ⊆ lanI(x). If Lx ≠ 0 then RxL is a nonzero left 
ideal of R (RxL = 0 would imply LxLx ⊆ RxLx = 0 and so Lx would be a 
nonzero trivial left ideal in a semiprime ring). Since lanR(x) is an essential 
left ideal of R, 0 ≠ RxL ∩ lanR(x) and L ∩ lanI(x) is nonzero. ♦
corolary 2.1: let R be a semiprime (-1, 1) ring and I an essential ideal of R. 
Then Z

l
(R) = 0 if and only if Z

l
(I) = 0.
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Lemma 2.3: let R be semiprime (-1, 1) ring. Then every 1-uniform element 
generates a uniform ideal.
Proof : Let I be the ideal generated in R by a 1-uniform element u and let J 
and K be nonzero ideals of R contained in I. We note that Ju ≠ 0 otherwise u ∈ 
ran(J) = ann(J) (by Preposition 2.1(i)),which implies I ⊆ ann (J),and since J ⊆ 
I,we would have J = J ∩ ann(J) = 0 (by Proposition 2.1 (ii)), a contradiction. 
Analogously Ku ≠ 0. Denote the L and L′ the nonzero left ideals of R generated 
by Ju and Ku respectively. Then 0 ≠ L ∩ ′L ⊆ J ∩ K by the 1-uniformity of u. 

Since given a (-1, 1) ring R, the lattice £(R) of all ideals of R is an algebraic 
relative to the ∗ – product J ∗ K:=(JK), where (X) denotes the ideal of R 
generated by X, and XY the linear span of all products xy with x ∈ X and y ∈ 
Y, we can apply the result of [7] to obtain the following result. We note that J 
∗ K= 0 if and only if JK = 0. Hence R is semiprime (prime) if and only if the 
algebraic lattice (£(R), ∗) is semiprime (prime). Note that since (-1, 1) ring is 
alternative in many cases [10], J ∗ K is merely JK. ♦
Lemma 2.4: let R be a semiprime (-1, 1) ring. Then 

  (i) a nonzero ideal I of R is uniform if and only if the annihilator ideal 
ann(I) is maximal among all annihilator ideals ann(J) with J being a 
nonzero ideal of R, equivalently, R/ann(I) is a strongly prime ring.

 (ii) For each uniform ideal I of R there exists a unique maximal uniform 
ideal U of R containing I; actually U = ann(ann(I)).

(iii) The sum of all maximal uniform ideal of R is direct.

Proof: Suppose that R is nondegenerate and that R/ann(I) is a prime (-1, 1) 
ring. By Proposition 2.1(iv), the ring R/ann(I) is nondegenerate and so it is 
strongly prime.

The rest of the statement follows as a particular case of [7 Proposition 3.1], 
using that £(R) is a modular lattice. ♦

A subdirect product of (-1, 1) ring R ≤ ∏Rα will be called an essential 
subdirect product if R contains an essential ideal of the full product ∏Rα. If 
R is actually contained in the direct sum of the Rα, then R will be called an 
essential subdirect sum. An ideal I of a nondegenerate (-1, 1) ring R is called 
a closed ideal if I = ann(ann(I)). By the third annihilator property an ideal is 
closed if and only if it is the annihilator of an ideal. Note that by the above 
Lemma 2.4 (ii), maximal uniform ideals are closed.
theorem 2.1: For a (-1, 1) ring R the following conditions are equivalent :

 (i) R is an essential subdirect product of strongly prime (-1, 1) rings 
Rα.

(ii) R is nondegenerate and every nonzero ideal of R contains a 
uniform ideal.
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(iii) R is nondegenerate and every nonzero closed ideal of R contains 
a uniform ideal.

Actually we can take Rα 
= ann(Mα), where {Mα} is the family of all 

maximal uniform ideal of R.
Proof: (i) ⇒ (ii). In general any subdirect product R of a family {Rα} of 
nondegenerate (-1, 1) rings is nondegenerate. Let M ⊆ R be an essential 
ideal of the full direct product ∏Rα and set Mα : = M ∩ Rα, where we 
are regarding Rα as an ideal of ∏Rα. Then Mα is a nonzero ideal of Rα 
contained in R since M is an essential ideal ∏Rα. In fact Mα is a uniform 
ideal of R since Mα is uniform in Rα because Rα is strongly prime and 
any ideal of R contained in Mα is an ideal of Rα. Now if I is a nonzero 
ideal of R then πα(I) is a nonzero ideal of Rα for some index α. Hence by 
strongly primeness of Rα we have 0 ≠ πα(I) ∗ Mα ⊆ I ∩ Mα. Therefore I 
contains the nonzero ideal I ∩ Mα which is uniform since it is contained 
in Mα. 
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Let ∑Mα be the sum of all maximal uniform ideal of R, which 
is direct by Lemma 2.4 (iii). Since ann (∑Mα) is a closed ideal, it must be 
zero: otherwise ann (∑Mα) would contain a uniform ideal, and therefore 
a maximal uiform ideal because it is closed, which leads to contradiction. 
Hence, by a standard argument,  ann (∑Mα) = ann (∑Mα) = 0 implies 
that R is a subdirect product of the (-1, 1) rings Rα : = R / ann (Mα) each 
of which is a strongly prime (-1, 1) ring by Lemma 2.4 (i).

Finally, the homomorphic image of ⊕ Mα in ∏Rα is an essential ideal of 
∏Rα since Mα can be regarded as an essential ideal of Rα, by condition (v) in 
proposition 1. ♦
Lemma 2.5: let R be a semiprime (-1, 1) ring and I an ideal of R. Denote by 
R the quotient ring R / ann (I). We have:

  (i)   Any direct sum of nonzero left ideals of R  gives rise to the 
direct sum of nonzero left ideals of R with the same number of 
summands. Hence if R has finite left Goldie dimension then R
has also finite left Goldie dimension.

 (ii)   If a ∈ R has finite left Goldie dimension in R, then a : = a + ann 
(I) has finite left Goldie dimension in R .

(iii)   If Zl(R) = 0 then Zl( R ) = 0  . Moreover, if R is nondegenerate and 
I is a uniform ideal, then R  is a strongly prime left nonsingular 
(-1, 1) ring. 

 Proof: Let ∑ Lα be a direct sum of nonzero left ideals of R . Denote by π : R 
→ R the canonical projection of R onto R  . By Proposition 2.1(v), π(I) is an 
essential left ideal of R . Hence Lα : = π-1( Lα ) ∩ I is a nonzero left ideal of R, 
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for each index α. Now, we show that ∑ Lα is a direct sum. Indeed, if x ∈ Lβ ∩ 
(∑α≠βLα), then π(x) ∈ Lβ  ∩ (∑α≠β Lα ) = 0  . Therefore x ∈ I ∩ ann(I) = 0 ( by 
Proposition 2.1(ii)).
(ii) Let ∑ Lα be a direct sum of nonzero left ideals of R inside the principal left 
ideal. By taking Lα : = I(π-1( Lα )) we obtain a direct sum of nonzero left ideals 
of R contained in R  (a].
(iii) By Lemma 2.2, Zl(R) = 0 implies Zl(I) = o. But I can be regarded as an 
ideal of R  via the isomorphism x x  + ann(I), for x ∈ I and by Proposition 
2.1 (v) we have that I is an essential ideal of R . By proposition 2.1(iii) and 
Corollary to Lemma 2.2, Zl( R ) = 0 . If R is nondegenerate and I is uniform, 
then R  is strongly prime by condition (i) in Lemma 2.4. ♦
Theorem 2.2 : Let R be nondegenerate left local Goldie (-1, 1) ring. Then R 
is an essential subdirect sum of strongly prime left local Goldie (-1, 1) rings. 
More precisely ⊕ Mα  R ≤ ⊕ R / ann(Mα), where Mα rangs over all maximal 
uniform ideals of R. If R is actually left Goldie, then R is an essential subdirect 
sum of finitely many strongly prime left Goldie (-1, 1) rings.
Proof: Since R has finite left local Goldie dimension, any nonzero ideal of R 
contains an 1 - uniform element and hence a uniform ideal, by Lemma 2.3. 
Then by Theorem 2.1, R is an essential subdirect product of the strongly prime 
(-1, 1) rings Rα = R / ann(Mα), with Mα a maximal uniform ideal of R, each of 
which is strongly prime left local Goldie (-1, 1) ring by Lemma 2.4 (ii) and 
condition (ii) and (iii) in Lemma 2.5. Let us see that R ⊆ ⊕ Rα. Otherwise, 
there would exist x ∈ R such that x ∉ ann(Mα) for an infinite number of α′s. 
Say x ∉ ann(Mα) for every α ∈ ∧. Denote by Iα the left ideals of R generated 
by Mαx. Then 0 ≠ Mαx ⊆ Iα ⊆ Mα for every α ∈ ∧ and the sum ∑α ∈ ∧ Iα is direct. 
This implies that x has infinite left Goldie dimension, a contradiction.

Suppose additionally that R has finite left Goldie dimensition. Then it follows, 
from Lemma 2.4(iii) that R contains only a finite number of maximal uniform 
ideals, and hence R is an essential subdirect sum of a finite number of Rα. Moreover, 
each Rα has now finite left Goldie dimension by Lemma 2.5(i). ♦

3. thE constRuctIon of MAxIMAL LEft QuotIEnt RInGs 
of (-1, 1) RInGs

definition 3.1: We shall say that a (-1, 1) ring R has a maximal left quotient 
ring if there exists a ring Q such that

(i) Q is a left quotient ring of R and
(ii) If W is left quotient ring of R, there exists a unique monomorphism of 

rings f : W → Q with f(r) = r for every r ∈ R.
Clearly, this definition implies that a maximal left quotient ring of a ring R, if 
it exists, is unique up to isomorphisms,. We shall denote it by Ql

max 
(R).
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Definition 3.2: We will say that a left ideal I of a (-1, 1) ring R is dense if for every 
p, q∈ R. ∈ R, with p ≠ 0, there exists an a ∈ N(R) such that ap ≠ 0 and aq ∈ I.
Lemma 3.1: a left ideal I of a (-1, 1) ring R is dense if and only if R is a left 
quotient ring of I.
Proof: Suppose that I is a dense left ideal of R. On the One hand, given n ∈ 
N(I), if there exists p, q ∈ R such that (n, p, q) ≠ 0, then there exist n1, n2 ∈ N(R) 
such that n1p ∈ I,n2q ∈ I and 0 ≠ n2n1(n, p, q) = (n, n1p, n2q) = 0 and 0 ≠ n2n1 
{S(n, p, q)} = S(n, n1p, n2q) = 0, a contradiction. On the other hand, given p, 
q ∈ R, with p ≠ 0, there exists n ∈ N(R) such that np ≠ 0 and nq ∈ I and there 
exists s ∈ N(R) such that snp ≠ 0 and sn ∈ I. So, sn ∈ N(R) ∩ I ∩ N(I) and snp 
≠ 0 and snq ∈ I. The reciprocal is trivial. ♦
Definition 3.3: Let R be a (-1, 1) ring. We denote F ∗ as the set of all left ideals 
A of N(R) such that for every 0 ≠ x ∈ R and u ∈ N(R), there exists λ ∈ N(R) 
such that λx ≠ 0 and λu ∈ A.
Lemma 3.2: let R be a (-1, 1) ring. Then

(i) If I is a dense left ideal of R, then N(I) ∈ F ∗.
(ii) If A ∈ F ∗, then I := R1A is a dense left ideal of R.

Proof: (i) It is straight forward.

(ii) Let x, y ∈ R, x ≠ 0. By hypothesis there exists λ ∈ A such that λx ≠ 
0. By [12 Corollary 1 of Lemma 7.1.3] [λ, y]:= λy − yλ ∈ N(R), so if we 
apply the hypothesis again, there exists u∈ N(R) such that uλx ≠ 0 and 
u[λ, y] ∈ A. Therefore uλy = u[λ, y] + uyλ ∈ R1A, which completes the 
proof. ♦
Notation 3.1: We call F: = {R1A / A ∈ F ∗}. Now, given I = R1A∈ F, we 
have that A ⊂ N(I), hence I = R1A ⊂ R1N(I) ⊂ I. Therefore I = R1N(I), 
with N(I) ∈ F ∗. Moreover, the intersection of a finite family of elements 
of F contains an element of F as it can easily be seen that λ can be taken 
in A and that the intersection of a finite family of elements of F ∗ is an 
element of F ∗.

Let us consider W := {(I, f) / I ∈ F and f ∈ Hom∗
N(R) (I, R)} where Hom∗

N(R) 
(I, R) denotes the set of all homorphism of left N(R) – modules from I to R such 
that for every x ∈ R and λ, u ∈ N(I), (xλ)f = x(λ)f and ([λ, u])f ∈ N(R).

The following relation on W is an equivalence relation : (I, f) ≈ (I′, f ′) if 
and only if there exists I ′′ ∈ F such that f |I′′ = f′ |I′′ We denote by [I, F] the 
equivalence class of (I, f) and let Q := s /≈.

Abusing notation, given an element q ∈ Q, we will denote by Aq any 
element of F∗ and by fq any element of Hom∗

N(R) (R
1Aq, R) such that q = [R1Aq, 

fq]. The dense left ideal R1Aq will be denote by Iq.
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Let us define an N(R) – algebra structure on Q: Let q, q′∈ Q and λ, u ∈ 
N(R) :

   (i)  We define the sum q + q1 := [R1(Aq ∩ Aq′ ), fq + fq′ ].
  (ii)  We define the structure of the left N(R) – modules : λq := [R1Aλq, 

ρλfq], where Aλq:= {a ∈ N(R) / aλ ∈ Aq} ∈ F∗ and ρ denotes right 
multiplication.

(iii)    We define the structure of the right N(R) – module: qλ := [Iq, 
fqρλ].

(iv)    We define a product on Q: we denote by Aqq′ := { λ ∈ Aq such that 
(λ)fq ∈ Iq′}.

First we show that Aqq’ ∈ F∗
 . It is clear that it is a left ideal of R. Now, 

given 0 ≠ x ∈ R and u ∈ N(R), there exists λ ∈ N(R) such that λ x ≠ 0 
and λµ ∈ Aq, and there exists γ ∈ N(R) such that γλx ≠ 0 and γ(λµ) fq ∈
Iq′ , because Iq′  is a dense left ideal of R. So γλ ∈ N(R) and verifies that 
γλx ≠ 0 and γλµ ∈ Aqq′. 

Now, we can define the product qq′ := [R1A qq′., fqq′], where (∑xiai) fqq′ := 
∑xi((ai)fq) fq′ for every xi ∈ R1 and ai ∈ Aqq′. Let us show that it is well defined. 
Suppose that ∑xiai = 0, where xi ∈ R1 and ai ∈ Aqq′. but ∑xi((ai)fq) fq′  ≠ 0. By 
hypothesis there exist µ ∈ Aqq′ such that µ∑xi((ai)fq) fq′  ≠ 0. Then

µ∑xi((ai)fq) fq′  = ∑ ([µ, xi] + xiµ)((ai)fq) fq′

 = (1) ((∑ ([µ, xi]ai)fq) fq′  + ∑ xi ((µai)fq) fq′  
 = ((µ∑xiai)fq) fq′  − ((∑ xiµai)fq) fq′  + ∑xi ((µai)fq) fq′

 = − ((∑xi[µai])fq) fq′  − ((∑ xiaiµ)fq) fq′  + ∑xi(([µ, ai])fq) fq′

   + ∑ xi((aiµ)fq) fq′

 = (2) − ((∑xi[µ, ai])fq) fq′  + ((∑ xi[µ, ai])fq) fq′  = 0.

(i) is a consequence of µ and [µ, xi] belonging to N(R) and fq and fq′  
being homorphism of left N(R) – modules, and (2) uses the previous 
facts and ([µ, ai]fq ∈ N(R1Aq′ ), since ([µ, ai]fq belongs to N(R) and also 
belongs to R1Aq′ (because [µ, ai] ∈ Aqq′ ) hence ((∑xi[µ, ai])fq) fq′ = ∑ 
xi(([µ, ai])fq) fq′  by definition of Hom∗

N(R) ( Iq′ , R).

theorem 3.1: let Q be as above. Then 
  (i)  R is a subring of Q. Moreover, R is a dense left N(R) - Submodule of Q.
 (ii) N(R) ⊂ N(Q)
(iii)  If in addition R is Weakly Novikov ring then for every q ∈ Q and λ ∈ 

N(R), [λ, q] ∈ N(Q).
 (iv) The associator is a skew – symmetric function on Q.
 (v)  If A(R) is 2 – torsion free or semiprime, Q is a (-1, 1) ring. 
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Proof: (i) The map ψ : R → Q given by ψ(r) = [R1N(R), ρr] defines a 
monomorphism of rings : it is clear that ψ is a monomorphism of N(R) 
– modules, since ρr cannot vanish on a dense left ideal of R. Moreover, 
ψ(r) ψ(r ′) = [R1N(R), ρr] [R

1N(R), ρr′] = [R1N(R), frr′ ], where for every 
x ∈ R and λ ∈ N(R),(xλ) (frr′ ) = x((λ)ρr ρr′) = x(λrr′) = (xλ)ρrr′ , so ψ(r) 
ψ(r′) = ψ(rr′). Now given q, q′ ∈ Q with q ≠ 0, by construction there 
exists r ∈ Aq ∩ Aq′ such that (r)fq ≠ 0 (since Iq ∩ fq′  is a dense left ideal 
of R). Hence [R1N(R), ρr][Iq, fq] = [R1N(R), ρ(r)fq] ≠ 0 and [R1N(R), pr][ Iq′

, fq′ ] = [R1N(R), pr fq′ ] ∈ R.

(ii) Let us consider qj ∈ Q, for j = 1, 2, 3, and take a∈ A Aq q q q q q( ) ( )1 2 3 1 2 3
∩ . 

By definition of Aq q q1 2 3( ) we have (a) f Iq q q1 2 3
∈  ; therefore there exist yi ∈ 

R1 and ai ∈ Aq q2 3
such that (a) fq1

= ∑ yiai. Then for every x ∈ R1,

( ) (( ) )

((( ) ) )

(( )

xa f x a f f f

x a f f f

x y a f

q q q q q q

q q q

i i

1 2 3 1 2 3

1 2 3

( ) =

=

=∑ qq q

i i q q

q q q q q q

f

x y a f f

xa f x a f f f

2 3

2 3

1 2 3 1 2 3

)
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=

= xx y a f f
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i i q q

i i q q

( (( )

( (( ) ) .

∑

=∑
2 3

2 3

So, if [ Iq1
, fq1

] ∈ N(R) (i.e., fq1  = pλ with λ ∈ N(R)), then (a) fq1
= aλ ∈ 

N( Iq q2 3
) and therefore (xa) f q q q( )1 2 3

= x((aλ) fq2
) fq3

= (xa) f q q q( )1 2 3
; if [ Iq2

, fq2
] ∈ N(R), then yi((ai) fq2

) fq3
= (yi((ai) fq2

) fq3
. So, in any case, (xa)

fq q q1 2 3( ) = (xa) fq q q1 2 3( )  , which implies that N(R) ⊂ N(Q).
(iii) For every p1r ∈ R and q ∈ Q we have (q, r, r) = 0 and S(p, q, r) = 
0. (2.5) Otherwise, if there exists q ∈ Q such that (q, r, r) ≠ 0, let us 
consider λ ∈ N(R) such that qλ ∈ R and 0 ≠ (q, r, r)λ = (q, r, λr) = (q, r, 
[r, λ]) + (q, r, rλ) = 0 (by (ii) since [r, λ] ∈ N(R)), a contradiction.
Now, again if there exits q ∈ Q such that S(ρ, q, r) ≠ 0, let us consider λ 
∈ N(R) such that λq ∈ R and 0 ≠ λS(ρ, q, r) = S(λρ, q, r) = S([λ, ρ], q, 
r) + S(ρ, λq, r) = 0(by Teichmüller identity and (ii) since [λ,ρ] ∈ N(R)), 
a contradiction. 
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Now, given λ ∈ N(R) and q ∈ Q, there exists µ ∈ N(R) such that µ[λ, 
q] ∈ R. So for every r, s λ ∈ R we have
(r, µλq, s) = − (r, s, µλq) from (2.1)
 = − µ(r, s, λq) as the ring is Weakly Novikov
 = − µ(r, s, qλ) as [q,λ] ⊆ N(R)
 = − (r, s, µqλ) by Weakly Novikov identity 
 = (r, µqλ, s) by (2.1)
So we have µ[λ, q] ∈ N(R) for every q ∈ Q, λ ∈ N(R) and µ ∈ A[λ,q]. Now, 
if there exist p, p′ ∈ Q such that ([λ, q], p, p′ ) ≠ 0, then there exists µ ∈ 
N(R) such that µ[λ, q] ∈ R and 0 ≠ µ ([λ, q], p, p′) = (µ[λ, q], p, p′) = 0, 
by (ii) and (2.5), a contradiction. Moreover, if (p, ([λ, q], p′ ) ≠ 0 there 
exists µ′ ∈ N(R) such that µ ′p[λ, q] ∈ R and 0 ≠ µ(µ′p, p′, [λ, q]) = (µ′ 

p, p′µ [λ, q]) = −(µ′p, µ [λ, q], p′) = 0 by Weakly Novikov identity and 
from (2.1), a contradiction. From the above argument we also see that 
(p, p′, [λ, q]) = 0 which implies the [λ, q] ∈ N(Q).
(iv) Let p1 , p2, p3 ∈ Q and p = (p1 , p2, p3) + (p1 , p3, p2) ≠ 0. In view of (ii), 
(iii), Teichmuller identitiy, Weakly Novikov identity and (2.1), for any 
λ ∈ N(R) we have λ(p1 , p2, p3) = (λp1 , p2, p3) = (p1λ , p2, p3) = (p1 , λ p2, p3) 
− (p1 , λ, p2 p3) + p1(λ , p2, p3) + (p1λ , p2) p3 = (p1 , λ p2, p3) = − (p1 , p3, λp2) = 
−λ (p1 , p3, p2) = λ (p1, p2, p3) = (p1, p2, λp3).
By (i) and (ii), there exists λ3 ∈ N(R) ⊆ N(Q), such that λ3p ≠ 0 and λ3p3 ∈ 
R. Similarly, there exists λ2 ∈ N(R) ⊆ N(Q), such that λ2λ3p ≠ 0 and λ2p2 ∈ R. 
Finally, there exists 
λ1 ∈ N(R) ⊆ N(Q), such that λ1λ2λ3 p ≠ 0 and λ1p1 ∈ R. Therefore λ1λ2λ3 
p = (λ1 p1, λ2 p2, λ3 p3) + (λ1 p1, λ3 p3, λ2 p2) = 0, since R satisfies (2.1). The 
contradiction proves that p = 0.
(v) Suppose that there exists p, q ∈ Q such that (q, p, p) ≠ 0. Then for every λ 
∈ Ap, (q, p, p)λ2 = (q, pλ, pλ) = 0 by (5).

Suppose first A(R) is semiprime. We know that there exists α, β, γ ∈ N(R) 
such that qα, pβ, pγ ∈ R and (qα, pβ, pγ) ≠ 0. Now there exists λ ∈ Ap such 
that (qα, pβ, pγ)λ ≠ 0 and therefore, since A(R) is semiprime, (qα, pβ, pγ) λ2 

≠ 0 (otherwise the ideal generated by (qα, pβ, pγ)λ will be nilpotent see [9] a 
contradiction.

Suppose now that A(R) is 2 – torsion free. If λ, µ ∈ Ap. 0 = (q, p, p) (λ + 
µ)2 = (q, p, p)λ2 + (q, p, p)2λµ + (q, p, p)µ2 = 2(q, p, p)λµ. Note that (q, p, p)
λµ = (q, p, p)µλ = (q, p, p)µλ so (q, p, p)λµ = 0 a contradiction. Now again 
suppose that there exist p, q, r ∈ Q such that S(p, q, r) ≠ 0. Applying the same 
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argument as above we come across with a contradiction and hence we have Q 
is a (-1, 1) ring. ♦
Lemma 3.3: Let W be a left quotient ring of R and consider q∈ W then 
(N(R):q):={λ∈N(R)/λq ∈ R)}∈ F∗.
Proof: Given 0 ≠ x∈R and µ ∈ N(R), there locusts γ ∈ N(R) such that γx ≠ 0 
and γ(µq)∈R; hence γµ ∈ (N(R):q). ♦
theorem 3.2: let R be a (-1,1) ring such that A(R) is 2-torsion free or semiprime 
.then R is a left quotient ring of itself if and only if the maximal left quotient 
ring R exists.
Proof : Let W be a left quotient ring of R .Given an element q ∈ W by Lemma 
3.1 and Lemma 3.2 Iq;=R1(N(R)) ; q)is a dense left ideal of R .Now following 
the proof of Theorem 3.1(i),the map φ : W → Q defined by φ(q) := [Iq, ρq] is a 
monomorphism of (-1, 1) rings. ♦
Remark 3.1: By construction, the maximal left quotient ring is a (-1, 1) ring is 
unital with unit element [R1N(R),Id

R
].

Examples of maximal left quotient rings are as follows:
Example 3.1: It is clear that the maximal left quotient ring of an associative 
ring is its maximal left quotient ring as a (-1, 1) ring.

Example 3.2: Let Q be a Cayley-Dickson algebra over its center. Then 
Qmax

l(Q) = Q; Let W be a left quotient ring of Q, and take W in P. By 
hypothesis there exists n ∈ Z(Q) (which is a field) such that np ∈ Q. so 
p = n-1(ap) ∈ Q.
Example 3.3: If R is a Cayley – Dickson ring ,its maximal left quotient ring 
is a Cayley – Dickson algebra by definition R is a central order in a Cayley – 
Dickson algebra, denoted by Q. So Q is a left quotient ring of R ,which implies 
that Q

max
l(R) = Q

max
l(Q) = Q by (3.2).

Example 3.4: Let us consider a family {Rα} of (-1, 1) rings such that for 
every α there exist the maximal left quotient ring of Rα , which we denote 
Qα. Then Qmax

 l (⊕Rα) exists and is equal to ∏Qα, the direct product of 
Qα : the Proof is analogous to Utumi (1956), definition of maximal Left 
quotient ring.

4. cLAssIcAL LEft QuotIEnt RInGs:

The next proposition, which is in Gomez lozano and siles Molina (preprint), 
(5.7) and (6.7) (i), shows that the maximal ring of quotient gives us an 
appropriate framework in which to settle the different left quotient rings that 
have been investigated (Fountain – Gould and classical); see Essannouni and 
Kaidi (1994) and Gomezlozono and Siles Molina (preprint) for definitions. 
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This fact was used by ahn and Marki to give a general theory of Fountain and 
Gould left order in the setting of associative rings.
Proposition 4.1: let R be a (-1, 1) ring. If R is a classical (Fountain and Gould) 
left order in a (-1, 1) ring W, then W is a left quotient ring of R. So W is a 
subring of Q

max
l(R).

Let us construct the classical left order of a left Ore (-1, 1) ring R as the 
subring of Qmax

l(R) generated by R and the set {a-1 / a ∈ Reg (R) ∩ N(R)}.
Let R be a (-1, 1) ring. We recall that R satisfies the left Ore condition 

relative to a nonempty set S if for every a ∈ W and x ∈ R there exist b ∈ W and 
y ∈ R such that bx = ya. We will say that R is left Ore if it verifies the left Ore 
condition relative to Reg(R) ∩ N(R) ≠ φ, where Reg(R) denoted the set of all 
regular elements of R.

Note that Reg(R) ∩ N(R) ≠ 0 implies that R is a left quotient ring of itself. 
So there exists the maximal left quotient ring of R, denoted by Q.
Lemma 4.2: Every element a ∈ Reg(R) ∩ N(R) is invertible in Q.
Proof: It is easy to prove that Ra is a dense left ideal of R. Moreover, the map 
h: Ra → R, defined by (xa)h = x for every xa ∈ Ra, belongs to Hom R RM R( )

* ( , ) . 
Now [Ra, h] is the inverse of a in Q. Furthermore, [Ra, h] ∈ N(Q). ♦
Lemma 4.3 : (Common Denominator Theorem) . For every elements a, b ∈ 
Reg(R) ∩ N(R) there exist c, d ∈ Reg(R) ∩ N(R) such that cb = da. ♦
Theorem 4.4: Let R be a ring that satisfies the left Ore condition. Then T = 
{a-1x / a ∈ Reg (R) ∩ N(R), x ∈ R} is a subring of Q such that R is a classical 
left order in T.
Proof: Given a-1x, b-1y, where a, b ∈ Reg(R) ∩ N(R) and x, y ∈ R, by common 
denominator Theorem there exists c, d ∈ Reg(R) ∩ N(R) such that cb = da. So 
a-1x + b-1y = a-1d-1dx = b-1c-1cy = (da)-1(dx + cy) ∈ T. It is straight forward that 
a-1xb-1y ∈ T.

We now show that T is a (-1, 1) ring. Given p, q, r ∈ T, there exists a, b, c 
∈ Reg(R) ∩ N(R) such that ap, bq, cr ∈ R, so a2b(q, p, p) = 0 and (abc)S(p, q, 
r) = 0 and hence is a (-1, 1) ring. Now it is trivial that R is a classical left order 
in T. Also since a2b(q, p, p) = 0 which implies from the above fact that (p, p, q) 
= 0 = (q, p, p). Hence T can be seen as alternative too. ♦
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