On Eneström – Kakeya Theorem

B.A. ZARGAR

P.G. Department of Mathematics, University of Kashmir, Srinagar

Email: bazargar@gmail.com

Received: 15 December 2014 Revised: 27 February 2015 Accepted: 4 March 2015

Published online: March 30, 2015 The Author(s) 2015. This article is published with open access at www.chitkara.edu.in/publications

Abstract: In this paper we obtain some interesting Eneström-Kakeya type theorems concerning the location of zeros of polynomials. Our results extend and generalize Some well known results by putting less restrictive conditions on coefficients of polynomials.

Keywords and Phrases: Bounds, zeros, polynomial. *Mathematics subject classification:* (2002),30C10, 30C15.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following elegant result which is well known in the theory of the distribution of the zeros of a polynomial is due to Eneström and Kakeya[6].

Theorem A: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, is a polynomial of degree n, such that

$$a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0, \tag{1}$$

then all the zeros of P(z) lie in $|z| \le 1$. This is a beautiful result but it is equally limited in scope as the hypothesis is very restrictive. In the literature [1,3,5,7,8], there exists some extensions and generalizations of Eneström-Kakeya Theorem.

Recently Aziz and Zargar[2], relaxed the hypothesis of Theorem A in several ways and proved the following results.

Theorem B: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial of degree n such that for some $k \ge 1$.

$$ka_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0 \tag{2}$$

then P(z) has all its zeros in $|z+k-1| \le k$

Theorem C: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial of degree $n \ge 2$, such that either $a_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 > 0$, and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, if n is odd

Mathematical Journal of Interdisciplinary Sciences Vol. 3, No. 2, March 2015 pp. 131–138

Zargar, BA

 $a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$, if n is even, then all the zeros of P(z) lie in the circle

$$\left| z + \frac{a_{n-1}}{a_n} \right| \le 1 + \frac{a_{n-1}}{a_n} \tag{3}$$

Theorem B is an interesting extension of Theorem A.

In this paper we shall first present the following extension of Theorem C analogous to Theorem B which among other things include Theorem A as a special case.

Theorem 1.1: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial of degree $n \ge 2$ such that for some $k \ge 1$, either $ka_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 > 0$ and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, if n isoddor $ka_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$ and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$, if n is even then all the zeros of P(z) lie in the region

$$|z+\alpha||z+\beta| \le (k+\frac{a_{n-1}}{a_n})$$

where α , β are the roots of the quadratic

$$z^{2} + \frac{a_{n-1}}{a_{n}}z + k - 1 = 0$$
(4)

Taking $a_{n-1} = 2a_n\sqrt{k-1}$ and noting that the quadratic $z^2+2\sqrt{(k-1)}z+k-1=0$ has two equal roots each is equal to $-\sqrt{(k-1)}$, we get the following:

Corollary 1: If $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial of degree $n \ge 2$ such that for some $k \ge 1$, either $ka_n \ge a_{n-2} \ge \dots \dots \ge a_3 \ge a_1 > 0$ and $2a_n \sqrt{k-1} = a_{n-3} \ge \dots \dots \ge a_2 \ge a_0 > 0$, if n is odd or (5)

 $ka_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, and $2a_n\sqrt{k-1} = a_{n-1} \ge a_{n-3} \ge \dots \ge a_3 \ge a_1 > 0$, if n is even.

then all the zeros of P(z) lie in the circle

$$\left|\mathbf{z} + \sqrt{\mathbf{k} \cdot \mathbf{1}}\right| \le \left(k + 2\sqrt{k-1}\right)^{\frac{1}{2}} \tag{6}$$

Applying Corollary 1 to the polynomial

$$F(z) = b_{2n} z^{2n} + b_{2n-1} z^{2n-1} + \dots + b_1 z + b_0,$$

of even degree 2n, we get

Corollary 2: if

 $F(z) = \sum_{j=0}^{2n} b_j z^j$

is a polynomial of even degree 2n such that $kb_{2n} \ge b_{2n-2} \ge \dots \ge b_2 \ge b_0 > 0$, and $(k-1)b_{2n} = b_{2n-1} \ge b_{3n-3} \ge \dots \ge b_3 \ge b_1 > 0$, then all the zeros of P(z) lie in

$$\left|\mathbf{z} + \sqrt{\mathbf{k} \cdot \mathbf{1}}\right| \leq \left(k + 2\sqrt{k-1}\right)^{\frac{1}{2}}$$

Remark 1: Corollary 2 includes Eneström-Kakeya Theorem (Theorem A) as a special case. To see that we take k=1 in corollary 2 and

$$b_{2n-1} = b_{3n-3} = \dots = b_3 = b_1 = 0$$

it follows that if $b_{2n} \ge b_{2n-2} \ge \dots \ge b_2 \ge b_0 > 0$, then all the zeros of

$$F(z) = b_{2n}z^{2n} + b_{2n-2}z^{2n-2} + \dots + b_2z^2 + b_0$$

= $b_{2n}(z^2)^n + b_{2n-2}(z^2)^{n-1} + \dots + b_2(z^2) + b_0$

lie in $|z| \le 1$. Replacing z^2 by z and b_{2i} by b_i j = 0,1,2,...,n it follows that if

$$a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 > 0$$

then all the zeros of

$$P(z) = \sum_{j=0}^{n} a_j z^j$$

lie in $|z| \le 1$. which is precisely the conclusion of Eneström-Kakeya Theorem. Taking k=2, in corollary 1 the following result follows ; **Corollary 3:** if

$$P(z) = \sum_{j=0}^{n} a_j z^j$$

is a polynomial of degree $n \ge 2$ such that either

 $2a_n \ge a_{n-2} \ge \dots \ge a_3 \ge a_1 \ge 0$ and $2a_n = a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$, if n is odd

 $2a_n = a_{n-1} \ge a_{n-3} \ge \dots \ge a_2 \ge a_0 > 0$ and $2a_n \ge a_{n-2} \ge \dots \ge a_2 \ge a_0 > 0$, if n is even, then all the zeros of P(z) lie in

$$|z+1| \leq 2$$

On Eneström – Kakeya Theorem Zargar, BA Next we prove the following generalization of Theorem C Theorem 1.2: if

Corollary 4: If

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_{2\lambda} z^{2\lambda} + \dots + a_1 z + a_0,$$

is a polynomial of degree $n \ge 2$ such that either

$$a_n \ge a_{n-2} \ge \dots \dots \ge a_{2\lambda+1} \le a_{2\lambda-1} \le \dots \le a_3 \le a_1 > 0$$

and $a_{n-1} \ge a_{n-3} \ge \dots \ge a_{2\lambda} \le a_{2\lambda-2} \le \dots \le a_2 \le a_0 > 0$, for some integer $\lambda, \ 0 \le \lambda \le \frac{n-1}{2}$, if n is odd, or $a_n \ge a_{n-2} \ge \dots \ge a_{2\lambda} \le a_{2\lambda-2} \le \dots \le a_2 \le a_0 > 0$, and $a_{n-1} \ge a_{n-3} \ge \dots \dots \ge a_{2\lambda+1} \le a_{2\lambda-1} \le \dots \le a_3 \le a_1 > 0$, for some integer $\lambda, \ 0 \le \lambda \le \frac{n-2}{2}$ if n is even then all the zeroes of P(z) lie in the closed disk $\left| z + \frac{a_{n-1}}{a_n} \right| \le 1 + \frac{a_{n-1} + 2(a_0 + a_1 - (a_{2\lambda} + a_{2\lambda+1}))}{a_n}$ (7)

The following result is obtained by applying Theorem 1.2 to the polynomial P(tz):

$$P(z) = \sum_{j=0}^{n} a_j z^j$$

is a polynomial of degree $n \ge 2$ such that for some t>0 either

 $\begin{aligned} a_n t^n \geq a_{n-2} t^{n-2} \geq &\dots \geq a_{2\lambda+1} t^{2\lambda+1} \leq a_{2\lambda-1} t^{2\lambda-1} \leq \dots \leq a_3 t^3 \leq a_1 t > 0, \text{ and} \\ a_{n-1} t^{n-1} \geq a_{n-3} t^{n-3} \geq &\dots \geq a_{2\lambda} t^{2\lambda} \leq a_{2\lambda-2} t^{2\lambda-2} \leq \dots \leq a_2 t^2 \leq a_0 > 0, \text{ for some} \\ &\text{integer } \lambda, \ 0 \leq \lambda \leq \frac{n-1}{2}, \text{ if n is odd} \\ a_n t^n \geq a_{n-2} t^{n-2} \geq &\dots \geq a_{2\lambda} t^{2\lambda} \leq a_{2\lambda-2} t^{2\lambda-2} \leq \dots \leq a_2 t^2 \leq a_0 > 0, \text{ and} \\ a_{n-1} t^{n-1} \geq a_{n-3} t^{n-3} \geq &\dots \geq a_{2\lambda+1} t^{2\lambda+1} \leq a_{2\lambda-1} t^{2\lambda-1} \leq \dots \leq a_3 t^3 \leq a_1 t > 0, \text{ for} \\ &\text{some integer } \lambda, \ 0 \leq \lambda \leq \frac{n-2}{2}, \text{ if n is even , then all the zeros of P(z) lie in the} \\ &\text{closed disk} \end{aligned}$

$$\left| z + \frac{a_{n-1}}{a_n} \right| \le t + \frac{t^{n-1}a_{n-1} + 2(a_0 + a_1t - t^{2\lambda}(a_{2\lambda} + a_{2\lambda+1}t))}{t^{n-1}a_n}$$
(8)

2. PROOFS OF THE THEOREMS

On Eneström – Kakeya Theorem

Proof of Theorem 1.1: consider

$$\begin{split} \mathbf{F}(\mathbf{z}) &= (1 - \mathbf{z}^2) \mathbf{P}(\mathbf{z}) \\ &= -a_n z^{n+2} - a_{n-1} z^{n+1} + (a_n - a_{n-2}) z^n + \ldots + (a_3 - a_1) z^3 \\ &+ (a_2 - a_0) z^2 + a_1 z + a_0, \end{split}$$

For |z| > 1, we have

$$\begin{split} |F(z)| &= \left| -a_{n}z^{n+2} - a_{n-1}z^{n+1} - ka_{n}z^{n} + a_{n}z^{n} + (ka_{n} - a_{n-2})z^{n} \right. \\ &+ \dots + (a_{3} - a_{1})z^{3} + (a_{2} - a_{0})z^{2} + a_{1}z + a_{0} \right| \\ &\geq \left| z \right|^{n} \left\{ \left| a_{n}z^{2} + a_{n-1}z + (k-1)a_{n} \right| \right. \\ &\left. - \left| \frac{(ka_{n} - a_{n-2}) + (a_{n-1} - a_{n-3})\frac{1}{z} + \dots + (a_{3} - a_{1})\frac{1}{z^{n-3}}}{+ (a_{2} - a_{0})\frac{1}{z^{n-2}} + a_{1}\frac{1}{z^{n-1}} + a_{0}\frac{1}{z^{n}}} \right| \right\} \\ &\geq \left| z^{2} + \frac{a_{n-1}}{a_{n}}z + (k-1) \right| \\ &\left. - \frac{1}{|a_{n}|} \right| \left\{ \frac{(ka_{n} - a_{n-2}) + (a_{n-1} - a_{n-3})\frac{1}{|z|} + \dots + (a_{3} - a_{1})\frac{1}{|z|^{n-3}}}{+ (a_{2} - a_{2})\frac{1}{z^{n-2}} + a_{1}\frac{1}{z^{n-1}} + a_{2}\frac{1}{z^{n-3}}} \right| \end{split}$$

$$+(a_{2}-a_{0})\frac{1}{\left|z\right|^{n-2}}+a_{1}\frac{1}{\left|z\right|^{n-1}}+a_{0}\frac{1}{\left|z\right|^{n}}$$

$$> \left| z^2 + \frac{a_{n-1}}{a_n} z + (k-1) \right| - (k + \frac{a_{n-1}}{a_n})$$

>0,if
$$\left|z^{2} + \frac{a_{n-1}}{a_{n}}z + (k-1)\right| > (k + \frac{a_{n-1}}{a_{n}})$$

Hence all the zeros of F(z) whose modulus is greater than 1 lie in the region

$$\left|z^{2} + \frac{a_{n-1}}{a_{n}}z + (k-1)\right| \le (k + \frac{a_{n-1}}{a_{n}})$$
(9)

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy the inequality(9). Since all the zeros of P(z) are also the zeros of F(z), therefore it follows that all the zeros of P(z) lie in the region(9).

Let α and β be the roots of the quadratic $z^2 + \frac{a_{n-1}}{a_n}z + (k-1) = 0$, therefore from(9), we have $|z - \alpha| |z - \beta| \le k + \frac{a_{n-1}}{a_n}$. which completes the proof of Theorem 1.1 **Proof of Theorem 1.2**: Consider

$$\begin{aligned} \mathbf{F}(\mathbf{z}) &= (1 - \mathbf{z}^2) \mathbf{P}(\mathbf{z}) \\ &= -a_n z^{n+2} - a_{n-1} z^{n+1} + (a_n - a_{n-2}) z^n + \ldots + (a_3 - a_1) z^3 \\ &+ (a_2 - a_0) z^2 + a_1 z + a_0, \end{aligned}$$

therefore for |z| > 1, we have

Zargar, BA

$$\begin{split} F(z) &|= \left| -(a_{n}z^{n} + a_{n-1})z^{n+1} + (a_{n} - a_{n-2})z^{n} + \dots \\ &+ (a_{3} - a_{1})z^{3} + (a_{2} - a_{0})z^{2} + a_{1}z + a_{0} \right| \\ &\geq \left| z^{n+1} \right| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\left| a_{n} - a_{n-2} \right| \frac{1}{|z|} + \dots \\ &+ \left| a_{3} - a_{1} \right| \frac{1}{|z^{n-2}|} + \left| a_{2} - a_{0} \right| \frac{1}{|z^{n-1}|} + \left| a_{1} \right| \frac{1}{|z^{n}|} + \frac{|a_{0}|}{|z^{n+1}|} \right) \right\} \\ &> \left| z^{n+1} \left| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\left| a_{n} - a_{n-2} \right| + \dots \\ &+ \left| a_{3} - a_{1} \right| + \left| a_{2} - a_{0} \right| + \left| a_{1} \right| + \left| a_{0} \right| \right) \right\} \\ &= \left| z^{n+1} \left| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\sum_{j=0}^{n} \left| a_{j} - a_{j-2} \right| + \left| a_{1} \right| + \left| a_{0} \right| \right) \right\} \\ &= \left| z^{n+1} \left| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\sum_{j=0}^{n} \left| a_{j} - a_{j-2} \right| + \left| a_{1} \right| + \left| a_{0} \right| \right) \right\} \\ &= \left| z^{n+1} \left| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\sum_{j=0}^{n} \left| a_{j} - a_{j-2} \right| + \left| a_{1} \right| + \left| a_{0} \right| \right) \right\} \\ &= \left| z^{n+1} \left| \left\{ \left| a_{n}z + a_{n-1} \right| - \left(\sum_{j=0}^{n} \left| a_{j} - a_{j-2} \right| + \left| a_{1} \right| + \left| a_{0} \right| \right) \right\} \end{split}$$

Assuming first that n is even then from (10), for |z|=1, we have

. f

On Eneström – Kakeya Theorem

$$|F(z)| > |z^{n+1}| \left\{ |a_n z + a_{n-1}| - (a_0 + a_1 + \sum_{k=1}^{n} |a_{2k-2} - a_{2k}| + \sum_{k=\lambda+1}^{\frac{n}{2}} |a_{2k} - a_{2k-2}| + \sum_{k=\lambda+1}^{\frac{n-2}{2}} |a_{2k+1} - a_{2k-1}| \right\}$$
$$= |z^{n+1}| \left\{ |a_n z + a_{n-1}| - 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1}) + a_n + a_{n-1} \right\}$$

>0,if

$$\left|z + \frac{a_{n-1}}{a_n}\right| > 1 + \frac{a_{n-1} + 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1})}{a_n}$$
(11)

In case n is odd it can be easily seen that |P(z)|>0 if (11) holds. Hence all those zeros of P(z) whose modulus is greater than 1 lie in the circle

$$\left|z + \frac{a_{n-1}}{a_n}\right| > 1 + \frac{a_{n-1} + 2(a_0 + a_1 - a_{2\lambda} - a_{2\lambda+1})}{a_n}$$
(12)

But all those zeros of P(z) whose modulus is less than or equal to 1 already satisfy (12). Therefore it follows that all the zeros of P(z) lie in the circle(12). which proves Theorem(1.2).

REFRENCES

- Aziz, A and Mohammad, Q.G., Zero Free Regions for polynomials and some Generalizations of Eneström-Kakeya Theorem(1984), Canad.Math.Bull. 27, 265-272.
- 2. Aziz, A and Zargar, B.A., Some Extensions of Eneström-Kakeya Theorem, (1996), Glasnick Matematicki **31**(51), 239-244.
- 3. Aziz, A and Zargar, B.A., Some Refinements of Eneström- Kakey Theorem, (2007), Analysis in theory and Applications, **3**,129-137.
- Dewan, K.K and Govil, N.K., On the Eneström- Eneström-Kakeya Theorem, (1984), J.Approx. theory 42,239-244. http://dx.doi.org/10.1016/0021-9045(84)90041-8
- 5. Govil, N.K., and Rahman, Q.I., On the Eneström-Kakeya Theorem (1968), Tohoku Math.j. **20**,126-136. http://dx.doi.org/10.2748/tmj/1178243172
- 6. Marden, M., M., Geometry of polymonials, (1966) Math surveys No.3 Amer. Math.Soc..providence).

Zargar, BA

- 7. Milovanovic, G.V, Mitrinovic, D.S. and Rassias, Th.M., Topics in polynomials, Extremal polynomials, Inequalities, zeros(1994), (Singapore, world scientific).
- 8. Rahman, Q.I andSchmeisser, G., Analytic theory of polynomials (2002), Clarendon press-oxford.,