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Abstract: In this paper we obtain some interesting Eneström-Kakeya type 
theorems concerning the location of zeros of polynomials. Our results extend 
and generalize Some well known results by putting less restrictive conditions 
on coefficients of polynomials.
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1. InTrOducTIOn And sTATEmEnT Of rEsulTs

The following elegant result which is well known in the theory of the distribution 
of the zeros of a polynomial is due to Eneström and Kakeya[6].

Theorem A: If P z a z a z a z an
n

n
n( ) .... ,= + + + +−
−

1
1

1 0  is a polynomial of 
degree n,such that 

 a a a an n≥ ≥ ≥ ≥ >−1 1 0 0....... ,  (1)

then all the zeros of P(z) lie in |z|≤1. This is a beautiful result but it is equally 
limited in scope as the hypothesis is very restrictive. In the literature [1,3,5,7,8], 
there exists some extensions and generalizations of Eneström-Kakeya Theorem. 

recently Aziz and Zargar[2], relaxed the hypothesis of Theorem A in 
several ways and proved the following results.

Theorem B: If P z a z a z a z an
n

n
n( ) ....= + + + +−
−

1
1

1 0  is a polynomial of degree 
n such that for some k≥1.

 ka a a an n≥ ≥ ≥ ≥ >−1 1 0 0.......  (2) 

then P(z) has all its zeros in |z+k-1|≤k

Theorem c: If P z a z a z a z an
n

n
n( ) ....= + + + +−
−

1
1

1 0  is a polynomial 
of degree n≥2, such that either a a a an n≥ ≥ ≥ ≥ >−2 3 1 0....... ,  and 
a a a an n− −≥ ≥ ≥ ≥ >1 3 2 0 0....... , if n is odd 
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or
a a a an n− −≥ ≥ ≥ ≥ >1 3 2 0 0....... , and a a a an n− −≥ ≥ ≥ ≥ >1 3 3 1 0....... , if n is 
even, then all the zeros of P(z) lie in the circle

 z
a

a

a

a
n

n

n

n

+ ≤ +− −1 11  (3)

Theorem B is an interesting extension of Theorem A.
 In this paper we shall first present the following extension of Theorem C 

analogous to Theorem B which among other things include Theorem A as a 
special case.
Theorem 1.1: If P z a z a z a z an

n
n

n( ) ....= + + + +−
−

1
1

1 0  is a polynomial of 
degree n≥2 such that for some k≥1, either ka a a an n≥ ≥ ≥ ≥ >−2 3 1 0.......  and 
a a a an n− −≥ ≥ ≥ ≥ >1 3 2 0 0....... , if n is odd or ka a a an n− −≥ ≥ ≥ ≥ >1 3 2 0 0.......  
and a a a an n− −≥ ≥ ≥ ≥ >1 3 3 1 0....... , if n is even then all the zeros of P(z) lie 
in the region 

z z k
a

a
n

n

+ + ≤ + −α β ( )1
 

 where α, β are the roots of the quadratic

 z
a

a
z kn

n

2 1 1 0+ + − =−
 (4) 

Taking a a kn n− = −1 2 1  and noting that the quadratic z²+2√(k-1)z+k-1=0 
has two equal roots each is equal to -√(k-1), we get the following:

corollary 1: If P z a z a z a z an
n

n
n( ) ....= + + + +−
−

1
1

1 0  is a polynomial of 
degree n≥2 such that for some k≥1, either ka a a an n≥ ≥ ≥ ≥ >−2 3 1 0.......
and 2 1 03 2 0a k a a an n− = ≥ ≥ ≥ >− ....... , if n is odd or     (5)

ka a a an n− −≥ ≥ ≥ ≥ >1 3 2 0 0....... , and 

2 1 01 3 3 1a k a a a an n n− = ≥ ≥ ≥ ≥ >− − ....... ,   if n is even. 

then all the zeros of P(z) lie in the circle

 
 

z k-1+ ≤ + −( )k k2 1
1

2

 
 (6) 

Applying Corollary 1 to the polynomial 

 F z b z b z b z bn
n

n
n( ) .... ,= + + + +−
−

2
2

2 1
2 1

1 0  

of even degree 2n, we get
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corollary 2: if

F z b zj
j

j

n

( )=
=
∑

0

2

is a polynomial of even degree 2n such that kb b b bn n2 2 2 2 0 0≥ ≥ ≥ ≥ >− ....... ,  
and ( ) .......k b b b b bn n n− = ≥ ≥ ≥ ≥ >− −1 02 2 1 3 3 3 1 , then all the zeros of P(z) lie 
in

 z k-1+ ≤ + −( )k k2 1
1

2

remark 1: Corollary 2 includes Eneström-Kakeya Theorem (Theorem A) as 
a special case. To see that we take k=1 in corollary 2 and

b b b bn n2 1 3 3 3 1 0− −= = = = =....... ,

it follows that if b b b bn n2 2 2 2 0 0≥ ≥ ≥ ≥ >− ....... , then all the zeros of

F z b z b z b z b

b z b z

n
n

n
n

n
n

n
n

( ) .......

( ) ( )

= + + + +

= +
−

−

−

2
2

2 2
2 2

2
2

0

2
2

2 2
2 −− + + +1

2
2

0....... ( )b z b

lie in |z|≤1. replacing z² by z and b
2j
 by b

j
 j = 0,1,2....,n it follows that if 

a a a an n≥ ≥ ≥ ≥ >−1 1 0 0.......

then all the zeros of

P z a zj
j

j

n

( )=
=
∑

0

lie in |z|≤1. which is precisely the conclusion of Eneström-Kakeya Theorem.
Taking k=2, in corollary 1 the following result follows ;
corollary 3: if

 P z a zj
j

j

n

( )=
=
∑

0

is a polynomial of degree n≥2 such that either 
2 02 3 1a a a an n≥ ≥ ≥ ≥ >− .......  and 2 01 3 2 0a a a a an n n= ≥ ≥ ≥ ≥ >− − ....... , 
if n is odd
or
2 01 3 2 0a a a a an n n= ≥ ≥ ≥ ≥ >− − .......  and 2 02 2 0a a a an n≥ ≥ ≥ ≥ >− ....... ,
 if n is even, then all the zeros of P(z) lie in

|z+1|≤2. 
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Next we prove the following generalization of Theorem C
Theorem 1.2: if

 P z a z a z a z a z an
n

n
n( ) .... ..... ,= + + + + + +−
−

1
1

2
2

1 0λ
λ

is a polynomial of degree n≥2 such that either

a a a a a an n≥ ≥ ≥ ≤ ≤ ≤ ≤ >− + −2 2 1 2 1 3 1 0....... ...λ λ

and a a a a a an n− − −≥ ≥ ≥ ≤ ≤ ≤ ≤ >1 3 2 2 2 2 0 0....... ...λ λ , for some integer

λ λ, 0
1

2
≤ ≤

−n , if n is odd, or

a a a a a an n≥ ≥ ≥ ≤ ≤ ≤ ≤ >− −2 2 2 2 2 0 0....... ...λ λ , and

a a a a a an n− − + −≥ ≥ ≥ ≤ ≤ ≤ ≤ >1 3 2 1 2 1 3 1 0....... ... ,λ λ for some integer 

λ λ, 0
2

2
≤ ≤

−n if n is even then all the zeroes of P(z) lie in the closed disk 

 

 
z

a

a

a a a a a

a
n

n

n

n

+ ≤ +
+ + − +− − +1 1 0 1 2 2 11

2( ( ))λ λ

 
(7) 

The following result is obtained by applying Theorem 1.2 to the polynomial 
P(tz):
corollary 4: If

P z a zj
j

j

n

( )=
=
∑

0

is a polynomial of degree n≥2 such that for some t>0 either 

a t a t a t a t a t a tn
n

n
n≥ ≥ ≥ ≤ ≤ ≤ ≤ >−
−

+
+

−
−

2
2

2 1
2 1

2 1
2 1

3
3

1 0....... ...λ
λ

λ
λ ,,  and

a t a t a t a t a t an
n

n
n

−
−

−
−

−
−≥ ≥ ≥ ≤ ≤ ≤ ≤ >1

1
3

3
2

2
2 2

2 2
2

2
0 0....... ... ,λ

λ
λ

λ for some 

integer λ λ, 0
1

2
≤ ≤

−n
 , if n is odd

a t a t a t a t a t an
n

n
n≥ ≥ ≥ ≤ ≤ ≤ ≤ >−
−

−
−

2
2

2
2

2 2
2 2

2
2

0 0....... ... ,λ
λ

λ
λ and

a t a t a t a t a t an
n

n
n

−
−

−
−

+
+

−
−≥ ≥ ≥ ≤ ≤ ≤ ≤1

1
3

3
2 1

2 1
2 1

2 1
3

3....... ...λ
λ

λ
λ

11 0t> ,  for

some integerλ λ, 0
2

2
≤ ≤

−n , if n is even ,then all the zeros of P(z) lie in the 
closed disk

  z
a

a
t

t a a a t t a a t

t a
n

n

n
n

n
n

+ ≤ +
+ + − +−

−
− +

−
1

1
1 0 1

2
2 2 1

1

2( ( ))λ
λ λ   (8)
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2. PrOOfs Of ThE ThEOrEms

Proof of Theorem 1.1: consider

F z   1 z P z( ) = −( ) ( )
=− − + − + + −+

−
+

−

²

( ) ... (a z a z a a z a an
n

n
n

n n
n2

1
1

2 3 1))

( ) ,

z

a a z a z a

3

2 0
2

1 0+ − + +

For |z|>1, we have 

F z a z a z ka z a z ka a z

a a z

n
n

n
n

n
n

n
n

n n
n( ) ( )

... ( )

= − − − + + −

+ + −

+
−

+
−

2
1

1
2

3 1
33

2 0
2

1 0+ − + +( )a a z a z a

≥ + + −{

−
− + − + + −

−

− − −

z a z a z k a

ka a a a
z

a a

n

n n n

n n n n

2
1

2 1 3 3 1

1

1

( )

( ) ( ) ... ( ))

( )

1

1 1 1

3

2 0 2 1 1 0

z

a a
z

a
z

a
z

n

n n n

−

− −+ − + +











≥ + + −

−

− + − + + −

−

− − −

z
a

a
z k

a

ka a a a
z

a a

n

n

n

n n n n

2 1

2 1 3 3 1

1

1

1 1

( )

( ) ( ) ... ( )
zz

a a
z

a
z

a
z

n

n n n

−

− −+ − + +





















3

2 0 2 1 1 0

1 1 1
( ) 

> + + − − +− −z
a

a
z k k

a

a
n

n

n

n

2 1 11( ) ( )

>0,if

z
a

a
z k k

a

a
n

n

n

n

2 1 11+ + − > +− −( ) ( )
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Hence all the zeros of F(z) whose modulus is greater than 1 lie in the region

 
z

a

a
z k k

a

a
n

n

n

n

2 1 11+ + − ≤ +− −( ) ( )
 

 (9)

But those zeros of F(z) whose modulus is less than or equal to 1 already satisfy 
the inequality(9). Since all the zeros of P(z) are also the zeros of F(z), therefore 
it follows that all the zeros of P(z) lie in the region(9).

Let α and β be the roots of the quadratic z
a

a
z kn

n

2 1 1 0+ + − =− ( ) , therefore 

from(9), we have z z k
a

a
n

n

− − ≤ ++ −α β 1 .  which completes the proof of 
Theorem 1.1 
Proof of Theorem 1.2: Consider

F z   1 z P z( ) = −( ) ( )
=− − + − + + −+

−
+

−

²

( ) ... (a z a z a a z a an
n

n
n

n n
n2

1
1

2 3 1))

( ) ,

z

a a z a z a

3

2 0
2

1 0+ − + +

therefore for |z|>1, we have

 

F z a z a z a a z

a a z a a z

n
n

n
n

n n
n( ) ( ) ( ) ...

( ) ( )

= − + + − +

+ − + − +

−
+

−1
1

2

3 1
3

2 0
2 aa z a

z a z a a a
z

a a
z

a a

n
n n n n

n

1 0

1
1 2

3 1 2 2

1

1

+

≥ + − − +






+ − + −

+
− −

−

( ...

00 1 1
0

1

1
1 2

1 1

z
a

z

a

z

z a z a a a

n n n

n
n n n n

− +

+
− −

+ +







> + − − +{
+

)

( ...

aa a a a a a

z a z a a a a an
n n j j

j

n

3 1 2 0 1 0

1
1 2

0
1 0

− + − + + }

= + − − + +


+

− −
=
∑

)

( )








= +{

− + + − + −

+
−

−
=

+∑

z a z a

a a a a a a

n
n n

k k
k

n

k k

1
1

0 1 2 2 2
1

2

2 1 2( −−
=

−

∑








1
1

2

k

n k

)

 (10)
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Assuming first that n is even then from (10), for |z|=1, we have

F z z a z a a a a a

a a

n
n n k k

k

k k
k

( ) (> + − + + −





+ −

+
− −

=

−
=

∑1
1 0 1 2 2 2

1

2 2 2

λ

λλ λ+
+ −

= +

−

+
−

∑ ∑+ −









= + −

1

2

2 1 2 1
1

2

2

1
1 2

n

k k
k

n

n
n n

a a

z a z a a

)

( 00 1 2 2 1 1+ − − + +{ }+ −a a a a an nλ λ )
 >0,if

  z
a

a

a a a a a

a
n

n

n

n

+ > +
+ + − −− − +1 1 0 1 2 2 11

2( )λ λ   (11)

In case n is odd it can be easily seen that |P(z)|>0 if (11) holds. Hence all those 
zeros of P(z) whose modulus is greater than 1 lie in the circle

 z
a

a

a a a a a

a
n

n

n

n

+ > +
+ + − −− − +1 1 0 1 2 2 11

2( )λ λ  (12)

But all those zeros of P(z) whose modulus is less than or equal to 1 already 
satisfy (12). Therefore it follows that all the zeros of P(z) lie in the circle(12). 
which proves Theorem(1.2). 
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