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Abstract: let P(z) be a polynomial of degree n not vanishing in |z| < k where 
k > = 1. It is known that 
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In this paper, we obtain a refinement of this and many other related results.
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1. InTrOducTIOn And STATEMEnT Of rESulTS

For an arbitrary entire function, let M f r Max f zz r( , ) | ( ) || |= =  and 
m f r Min f zz r( , ) | ( ) || |= = . let P(z) be a polynomial of degree n, then

 M P R R M P Rn( , ) ( , ), .≤ ≥1 1  (1)

Inequality (1) is a simple deduction from Maximum Modulus Principle (see 
[6], p-442). It was shown by ankeny and rivilin [1] that if P(z) does not vanish 
in |z| < 1, then (1) can be replaced by
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The bound in (2) was further improved by aziz and Dawood [2], who under 
the same hypothesis proved
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as a generalization of (2), aziz and Mohammad [3] proved that if P z( )≠ 0  in 
| | ,z k k< ≥1 , then for R ≥ 1,
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whereas under the same hypothesis, aziz and Zargar [4] extended inequality 
(3) by showing that
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In this note, we obtain a refinement of (5) and hence of inequalities (2), (3) and 
(4) as well. More precisely, we prove
Theorem 1. If P(z) is a polynomial of degree n≥3 which does not vanish in 
| | ,z k k< ≥1, then for R ≥ 1
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On The Maximum 
Modulus of a 

Polynomial

127

mials of degree greater than two, our theorem sharpens the bound obtained 
in (5). (The cases when polynomial P(z) is of degree 1 or 2 is uninteresting 
because then M(P,R) can be calculated trivially). In fact, excepting the case 
when ′ = ′P Q( ) ( )0 0 , the bound obtained by our theorem is always sharp than 
the bound that is obtained in (5).

2. lEMMAS

For the proof of Theorem 1, we require the following lemmas.
lemma 1. If P(z) is a polynomial of degree n≥3 and Q z z P

z
n( )=



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for every r ≥ 1 and θ θ π, 0 2≤ < ,
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The above lemma is due to Jain [5].
lemma 2. If P(z) is a polynomial of degree n which does not vanish in 
| | ,z k k< > 0 , then for every R r k≥ ≤1,  and for every θ θ π, 0 2≤ < ,
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The above lemma is due to aziz and Zargar [4]. 

3. PrOOf Of THE THEOrEM

Proof of the Theorem 1. Since P z( )≠ 0 in | | ,z k k< ≥1 , using lemma 2, it 
follows from (8) with r = 1, that
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for every θ θ π, 0 2≤ < and r ≥ 1. Since Q z z P
z

n( )=







1
 , we have

 Q R P
e

R
i n

i

(re ) .θ
θ

=










 (10)

using (10) in (9), we get
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This implies,
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Inequality (11) yields with the help of lemma 1 that
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From (12), it follows that for every θ θ π,0 2≤ <  and R ≥ 1,
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which is equivalent to the desired result and this completes the proof of 
Theorem 1.
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