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Abstract: A function f : (X,μ) → (Y,σ) is said to be almost (μ, σ) -irresolute if f -1 (V) 
∈  so(X,µ ) for every regular semi-open set V of Y. In this paper the authors introduce 
and investigate almost (µ ,σ )-irresolute, quasi (µ ,σ )-irresolute on generalized 
topological space (X,µ ) into the topological space (Y,σ ). Some characterizations 
and properties of such a type of functions are discussed. 
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1. InTroducTIon

In topology weak forms of open sets play an important role in the generalization 
of various forms of continuity. using various forms of open sets, many authors 
have introduced and studied various types of continuity. In 1961, levine [10] 
introduced the notion of weak continuity in topological spaces and obtained a 
decomposition of continuity. 

generalized topology (X,µ ) was first introduced by csaszar [3]. We recall 
some notions defined in [3]and [7]. 

let X be a set. A subset µ of expX is called a generalized topology on 
X and (X,µ ) is called a generalized topological space [3] (gTS) if µ has the 
following properties 

(i) φ µ∈
(ii) Any union of elements of belongs to . 
For a gTS (X,µ ), the elements of µ are called µ -open sets and the 

complement of µ -open sets are called µ -closed sets. For A⊆X, we denote 
by c

µ
(A) the intersection of all µ -closed sets containing A, that is, the smallest 

µ - closed set containing A, and by i
µ
(A) the union of all µ -open sets contained 
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in A, that is, the largest µ -open set contained in A. Intensive research on the 
field of generalized topological space (X,µ ) was done in the past ten years as 
the theory was developed by A. Csaszar[3], Ahana Balan[7] 

 It is easy to observe that i
µ 
and c

µ 
are idempotent and monotonic, where γ : 

exp X→exp X said to be idempotent if and only if A⊆B⊆X implies γ( γ (A)) 
= γ (A) and monotonic if and only if γ (A)⊆ γ (B). It is also well known that 
from [5,6] , that if µ is a gT on X and A⊆X , x∈  X then x ∈ c

µ
(A) if and only 

if x ∈ ∈ => ∩ ≠ ∅M M Aµ  and c
µ
(X-A) = X–i

µ
(A).

Let B⊂  expX and ∅ ∈B. Then B is called a base[4] for µ if { ∪ B′ : B′⊂
B}=µ . We also say that µ  is generated by B. Consider X={a,b,c} and µ={∅  
,{a},{b},{a,b}}. The µ -closed sets are X,{b,c},{a,c}and{c}. If A={a,b} then 
A is not µ -closed

A generalized topology (X,µ ) is said to be strong[4] if X∈ µ . Throughout 
this paper a space (X,µ ) or simply X for short, will always mean a strong 
generalized topological space with the strong generalized topology µ unless 
otherwise explicitly stated. A point x ∈ X is called a µ -cluster point of B⊂X 
if u ∩ (B-{x})≠ ∅ for each u ∈  µwith x∈  µ . The set of all µ -cluster point 
of B is denoted by d(B).

let (Y,σ ) be a topological space with topology σ . let A ⊂ (Y,σ ). The 
closure and interior of A is denoted by cl(A) and int(A) respectively, where the 
closure of A is the intersection of all closed sets containing A and the interior 
of A is the union of all open sets contained in A.

let (X, τ ) be a topological Space. The δ -closure[20] of a subset A 
of a topological space (X, τ ) is defined by{x∈ X : A ∩ U ≠ ∅  for all 
regular open set U containing x},where a subset A is called regular open 
if A = int(cl(A)). A subset A of a topological space (X, τ ) is called semi-
open[11] (resp., pre-open[13], α -open[15], β -open[14], b-open[1], δ -pre 
open [18], δ -semi open[17], and e-open[8]) if A⊆ cl(int(A)) (resp., A⊆
int(cl(A)), A⊆ int(cl(int(A)), A⊆ cl(int(cl(A))), A⊆ cl(int(A)) ∪  int(cl(A)), 
A⊆ int( clδ (A)), A⊆ cl( intδ (A)) and A⊆ int( clδ (A)) ∪  cl( intδ (A))). A point 
x∈ X is in sl(A) (resp., pcl(A)) if for each semi open (resp., pre open) set U 
containing x, U ∩ A ≠  ∅ . A point x∈ X is called a θ -cluster[20] (resp., 
semi θ -cluster[12],P(θ )-cluster[16]) point of A denoted by clθ (A) (resp., 
s. clθ (A), p(θ )-cl(A)) if cl(A) ∩ U ≠ ∅  (resp., sl(A) ∩ U ≠ ∅ , pl(A) ∩ U 
≠ ∅ ) for every open (resp., semi-open, pre-open) set U containing x. A 
subset A is called θ -closed (resp., semi θ -closed, P(θ )-closed) if clθ (A) 
= A (resp., s. clθ (A)) = A, p(θ )-cl(A) = A). The complement of a θ -closed 
(resp., semi-θ -closed, p(θ )-closed) set is called θ -open(resp., semi-θ
-open, p(θ )-open).  θ -open sets in a topological space forms a topology 
which is weaker than the original topology. 
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For any topological space(X, τ ), the collection of all semi open (resp., pre-
open, α -open, β -open, b-open, e-open,θ -open, p(θ )-open) sets are denoted 
by so(X) ( resp., po(X), α -o(X), β -o(X), Bo(X), eo(X), θ -o(X), pθ -o(X)). We 
note that each of these collections forms a generalized topology on (X, τ ). The 
end or omission of a proof will be denoted by ■

A subset A of (X, τ ) is θ -open if for each x ∈A there exists an open set U 
such that x∈  U ⊂cl(U) ⊂A.

Recall that, A subset A of X is said to be regular semi-open if there exists 
a regular open set u of X such that u⊂  A ⊂cl(u)

A function f : X → Y is said to be irresolute if f -1 (V) is semiopen in X for 
every semiopen set V of Y. 

A function f :X→Y is said to be almost irresolute if f -1 (V) is semiopen in 
X for every regular open set V of Y. 

A function f : X → Y is said to be θ -irresolute if for each x ∈ X and each 
semi neighbourhood V of f(x) there exists a semi neighbourhood u of x such 
that f(s.cl(V))⊂  s.cl(V) 

A function f :X→Y is said to be quasi irresolute if for each x ∈ X and each 
V ∈  so(Y,f(x)) there exists u ∈ so(X,x) such that f(u) ⊂ s.cl(V)

A subset A of X is µ -semiopen (abbr. µ -so) in X if A ⊂c
µ
i
µ
(A).  µ -so 

sets in X is denoted by so(X,µ ). A subset A of X is µ -preopen (abbr. µ -po) 
in X if A ⊂ i

µ
c

µ
(A). The family of all µ -po sets in X is denoted by po(X, µ ). 

For a subset A of X, the intersection of all µ -semi-closed sets containing A is 
called the µ -semi-closure of A and is denoted by s.c

µ
(A). For a subset A of X, 

the union of all µ -semi-open sets contained in A is called the µ -semi-interior 
of A and is denoted by s.i

µ
(A) 

2. Almost (µ -σ )-irresolute And relAted functions 

We recall the following definitions from[2], A function f : (X,µ ) → (Y,σ ) is 
said to be quasi (µ ,σ ) continuous at x ∈ X if for each U ∈ µ containing x and 
each V ∈ σ  containing f(x),there exists G∈ µ  such that ∅ ≠ G ⊂U and f(G) 
⊂V. If f is quasi (µ ,σ ) continuous at every point x ∈ X, then it is called quasi 
(Y,σ )-continuous. 

A function f : (X,µ ) → (Y,σ ) is said to be almost (µ  -σ )-continuous if 
for each x ∈X and each V ∈ σ containing f(x),there exists U ∈ µ  containing x 
such that f(U) ⊂  int (cl(V)).

 A function f : (X,µ ) → (Y,σ ) is said to be almost quasi (µ -σ )-continuous 
at x ∈ X if for each µ -open set U in X containing x and each V∈ σ  containing 
f(x),there exists µ -open set G in X such that ∅ ≠G⊂  U and f(G) ⊂ int(cl(V)).
If f is almost quasi (µ -σ )continuous at every x ∈ X, then it is called almost 
quasi(µ -σ )-continuous.(simply a.q. (µ -σ ).c) 
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theorem 2.1:The following are equivalent for a function f : (X,µ ) → (Y,σ ) 
(i) f is a.q. (µ -σ ).c 
(ii) for each x∈ X and V∈ σ  containing f(x),there exists U ∈ so(X,µ ) 
containing x such that f(U) ⊂ int(cl(V)) 
(iii) for each x ∈ X and V∈  Ro(Y, σ) containing f(x),there exists U∈  so(X, µ ) 
containing x such that f(U) ⊂V 
(iv)  s.cμ( f -1 (cl(int(cl(B))))) ⊂ f -1 (cl(B)) for each subset B of Y
(v) f -1 (F) ∈ s.cμ(X) for every F ∈ Rc(Y, σ ) 
(vi) s.cμ f -1 (V))⊂ f -1  (cl(V)) for every V ∈ so(Y, σ ) 
(vii) f -1 (V) ∈ so(X, µ ) for every V ∈ Ro(Y, σ ) 
Proof: (i) ⇒(ii) Let x X.∑x ={N|x ∈ N ∈ µ } and V be any open set of (Y,σ
) containing f(x). For each N∈  ∑x ,there exists GN ∈ μ such that ∅ ≠ GN ⊂  N 
and f(GN) ⊂ int(cl(V)). For 
G={ GN|N ∑x }, then we have x ∈ cμ(G) and G ∈ µ . Set U=G∪{x},then G ⊂U 
⊂  cμ(G) and hence x ∈ U so(X,µ ). Also we obtain f(U) ⊂ int(cl(V))
(ii) ⇒(iii) Obvious 
(iii) ⇒(iv) Let B be any subset of Y and suppose that x∉ f -1 (cl(B)). Then f(x)
∉ cl(B) and there exists V ∈ σ  containing f(x) such that V∩ B=∅ . Therefore 
we have V∩ int(cl(B))= ∅  and int(cl(V)) ∩ cl(int(cl(B)))=∅ . By (iii),there 
exists U ∈ so (X,µ ) containing x such that f(U) ∩ cl(int(cl(B)))= ∅ ;hence 
U ∩  f -1 (cl(int(cl(B)))= ∅ . This implies that x∉ s.cμ( f -1 (cl(int(cl(B))))). 
Clearly,we obtain s.cμ( f -1 (cl(int(cl(B))))) ⊂ f -1 (cl(B)) 
(iv) ⇒(v) Let F ∈ Rc(Y, σ ). By (iv), we have s.cμ( f -1 (F)) ⊂ f -1 (F) and hence 
f -1 (F) ∈ s.cμ(X) 

(v) ⇒(vi) Let V ∈ so(Y, σ ). Since cl(V) ∈ Rc(Y, σ ),by (v) we have f -1 (cl(V)) 
∈ s.cμ(X) and hence f-1(V) ∈ so(X, µ ) 
(vi) ⇒(vii) Let V ∈ Ro(Y, σ ). Since Y-V ∈ Rc(Y, σ) ⊂so(Y, σ ),as regular 
closed sets are semi-open,by (vi),we have s.cμ( f -1 (Y-V)) ⊂ f -1 (cl(Y-V))=
f -1 ( (Y-V). Therefore, f -1 (Y-V) ∈ s.cμ(X) and f -1 (V) ∈ so(X,µ ) 

(vii) ⇒(i) Let x be any point of X, x ∈ U∈  μ and f(x) ∈ V∈  σ . Since int(cl(V)) 
∈ Ro(Y, σ ) by (vii) we obtain x ∈ f -1 (int(cl(V))) ∈  so(X, µ ) and hence x ∈
U ∩ f -1 (int(cl(V))) ∈  so(X, µ ). Put G = iμ [U ∩ f -1  (int(cl(V)))],then we 
obtain ∅ ≠G ∈  µ and f(G) ⊂ int(cl(V)). This shows that f is a.q.(µ -σ ).c ■
Definition 2.1: A function f : (X,µ ) → (Y,σ ) is said to be almost (µ -σ )-ir-
resolute if f -1 (V) ∈ so(X,µ ) for every regular semiopen set V of Y.
Definition 2.2:A function f : (X,µ ) → (Y,σ ) is said to be quasi (µ -σ )-irresolute 
if for each x ∈ X and each V ∈  so(Y,f(x))there exists U ∈ so (X,µ ) containing x 
such that f(U)⊂scl(V).
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definition 2.3:A subset A of a space (X,µ ) is said to be µ -semipreopen if 
there exists a µ - preopen set u in X such that u⊂A⊂c

µ
(u). The family of 

all µ -semipreopen sets in X is denoted by spo(X,µ ). The complement of a µ
-semipreopen set is called µ -semipreclosed.
lemma 2.1:The following are equivalent for a subset A of a space (X,µ ) 

a) A ∈ spo(X,µ ) 

b) A ⊂cμ(iμ(cμ(A))) 
c) A⊂ s.iµ (s.c

µ
(A)) 

Proof : Obvious. ■
Definition 2.4: A function f : (X,µ ) → (Y,σ ) is said to be weakly (µ -σ ) - 
irresolute (resp. (µ -σ )-θ -irresolute) if for each x ∈ X and each semi-open 
set V of f(x),there exists a µ -semiopen set U containing x such that f(U) ⊂
s.cl(V) (resp.f(s.cμ (U)) ⊂ s.cl(V)). 
Lemma 2.2: let f : (X,µ ) → (Y,σ ) be a function. Then the following are 
equivalent: a) f is quasi (µ -σ ) - irresolute
b) for each x ∈ X and each V ∈  so(Y,f(x)) there exists u ∈ µ -so(X) containing 
x such that f(s.c

µ
(u))⊂ s.cl(V). 

c) f -1 (V) is semi-clopen in (X,µ ) for every semi-clopen set V of Y. 
d) f -1 (V) ⊂ s.i

µ
( f -1

(s.cl(V))) for every V ∈ so(Y).

e) s.c
µ
( f -1 (V)) ⊂ f -1 (s.cl(V)) for every V∈  so(Y) ■

lemma 2.3:If A ∈ so(X,µ ) then s.cμ(A) is semiclopen in (X,µ ). ■
Theorem 2.2:The following are equivalent for a function f : (X,µ ) → (Y,σ ) 

a) f is quasi (µ -σ ) -irresolute 

b) f is weakly (µ -σ ) irresolute 

c) f is (µ -σ ) -θ  -irresolute 

d) f is almost (µ -σ ) -irresolute

Proof:This follows from definitions 2.1,2.2,2.3 and lemma 2.2. ■
theorem 2.3:Let f : (X,µ ) → (Y,σ ) be a function. Then the following are 
equivalent : 
(i) f is almost (µ -σ )-irresolute 
(ii) f -1 (V) ⊂ s.iμ(s.cμ( f -1 (V))) for every V ∈ so(Y). 
(iii) f -1 (V) ⊂cμ(iμ(cμ( f -1 (V))) for every V ∈ so(Y). 
(iv) f -1 (V) ∈ spo(X, μ) for every V ∈ so(Y). 
Proof : (i) ⇒ (ii): Let V ∈ so(Y) and x ∈  f -1 (V) 
Since V is a semiopen set of Y containing f(x), s.cμ( f -1 (V)) is a semiopen set 
of (X,µ ) containing x and hence there exist U ∈ so(X,µ ) containing x such that 
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U ⊂ s.cμ( f -1 (V)). Therefore we have x∈U s.iμ(s.cμ( f -1 (V))). This implies that 
f -1 (V) ⊂ s.iμ(s.cμ( f -1 (V))). 

(ii) ⇒ (i) : Let x ∈ X and V be any semiopen set of f(x). There exists W ∈
so(Y,f(x)) contained in V. Therefore we obtain x ∈ f -1 (W) ⊂ s.iμ(s.cμ( f -1

(W))) ⊂ s.cμ( f -1 (W)) ⊂ s.cμ( f -1 (V)). This implies that s.cμ( f -1 (V)) is a µ
-semiopen set of X. 
It follows from Lemma 2.1 that (ii), (iii) and (iv) are equivalent. ■
Theorem 2.4:A function f : (X,µ ) → (Y,σ ) is said to be almost (µ -σ ) 
-irresolute if and only if f(s.cµ (u)) ⊂ s.cl(f(u)) for every u ∈ so(X,µ ). 
Proof: let u ∈ so(Xµ ,). Suppose that y∉ s.cl(f(u)),there exists V ∈ so(Y, y) 
such that V ∩ f(u)= ∅ hence f -1 (V) ∩ u=∅ . Since u∈  so(X,µ ),we have 
s.iµ (s.cµ (f -1(V))) ∩ s.cµ (u)=∅ . By theorem 2.3, f -1(V) ∩  s.cµ(u)= ∅ and 
hence V ∩ f(s.cµ(u))=∅ . Therefore we obtain y ∉ f(s.cµ(u)). This shows that 
f(s.cµ(u)) ⊂ s.cl f(u). Now let V ∈ so(Y). Since X-s.cµ( f -1 (V)) ∈ so(X,µ
),we have f(s.cµ(X-s.cµ f -1 (V))) ⊂ s.cl(f(X-s.c

µ
f -1 (V))) and hence X-s.i

µ
(s.

cµ f -1 (V))) ⊂ f -1 (s.cl(f(X-s.c
µ
( f -1  (V))))) ⊂ f -1 (s.cl(f(X-f -1(V)))) ⊂ f -1

(s.cl(Y-V)) = X- f -1 (V). Therefore we obtain f -1 (V)⊂  s.i
µ
(s.c

µ
( f -1 (V))). It 

follows from Theorem 2.3 that f is almost (µ -σ ) - irresolute. ■
theorem 2.5: Let f : (X,µ ) → (Y,σ ) be a function. Then the following are 
equivalent 
(i)  f is almost (µ -σ ) -irresolute. 
(ii) for each x∈  X and each V ∈ so(Y,σ ) containing f(x),there exists U ∈
spo(X,µ ) containing x such that f(U) ⊂V. 
(iii) f -1 (F) is semi preclosed in (X,µ ) for every semiclosed set F of Y. 
(iv) iμ(cμ(iμ( f -1 (B))))⊂ f -1  (s.cl(B)) for every subset B of Y. 
(v) f( iμ(cμ(iμ(A)))) ⊂ s.cl(f(A)) for every subset A of X 
Proof :(i)⇒(ii) : Let x∈ X and V ∈ so(Y,f(x)) 
Set U= f -1 (V), then by theorem 2.3,U is µ -semipreopen set containing x and 
f(U) ⊂V 
(ii)⇒(i):Let V ∈ so(Y) and x ∈ f -1 (V) there exists U ∈ spo(X, μ) containing 
x such that f(U)⊂V. By Lemma 2.1, we obtain x U⊂ s. iμ (s.cμ (U)) ⊂ s. iμ(s.
cμ( f -1 (V))). Hence f -1 (V) ⊂ s.iμ(s.cμ( f -1 (V))). It follows from Theorem 2.3 
that f is almost (µ -σ ) -irresolute. 
(i)⇒ (iii) This is obvious from Theorem 2.3 
(iii)⇒(iv) Let B be any subset of Y.Since s.cl(B) is semiclosed, we have f -1

(s.cl(B)) is µ -semipreclosed. By using Lemma 2.1,we have X - f -1 (s.cl(B)) 
⊂cμ(iμ (cμ (X- f -1 (s.cl(B)))))=X - iμ (cμ (iμ ( f -1 (s.cl(B))))) 
Therefore we obtain, iμ(cμ(iμ( f -1 (B)))⊂ f -1  (s.cl(B)) 
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(iv)⇒(v) Let A be any subset of (X,µ ) 
We have iμ(cμ(iμ(A)))⊂ iμ(cμ(iμ( f -1 (f(A))))) ⊂ f -1 (s.cl(f(A)). Therefore we 
obtain f( iμ(cμ(i μ(A))) ⊂ s.clσ(f(A)). 
(v)⇒(i) Let U ∈ so (X,µ ). Since s.cμ(U)=U ∩ iμ( cμ(U))=U ∩ iμ(cμ(iμU))),we 
obtain f(s.cμ(U))=f(U) ∪ f( iμ(cμ(iμ(U))))⊂  f(U) ∪ s.cl(f(U))=s.cl(f(U)) 
It follows from Theorem 2.4 that f is almost (µ -σ ) -irresolute. ■
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